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Economies of scale and increasing returns

So-called Nobel Prize has been attributed to Krugman:

Economies of scale combined with reduced transport costs
also help to explain why an increasingly larger share of the world
population lives in cities and why similar economic activities are
concentrated in the same locations. [This], in turn, stimulates
further migration to cities.
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The increasing returns are:
@ Self production: Learning curve

e Common production: adoption/network externalities
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© Stationarity

@ ARMA models for stationary variables

© Some extensions of the ARMA model

@ Non-stationarity

Seasonality

Non-linearities

Multivariate models

Structural VAR models

Cointegration the Engle and Granger approach
Cointegration 2: The Johansen Methodology

Multivariate Nonlinearities in VAR models

® 6600000

Multivariate Nonlinearities in VECM models
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What is a time serie?

In econometrics, we deal with three types of data:
@ Cross individual data: X; 7 :individu
@ Times series data: X; t:time
@ Panel data: X;; t:time
Definition
A time series is a variable X indexed by the time t: X; t=1,2,...,T.

Examples

The time t can be annual, monthly, daily...
@ Let be X; the annual GDP.
o Let Y;: be the monthly temperature
@ Z; be the daily stocks
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Some distinctions

The time series can:

@ Take discrete or continuous values.

@ Be measured at discrete (monthly, daily) or continous time (signal
processing, finance).

@ Be measured at regular or irregular intervals.

In this lecture, usually we will refer to time series that take continous
values and are measured at discrete and regular intervalls.
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Description of a time serie

To describe a time serie, we will concentrate on:

o Its Data Generating Process (DGP)
@ The joint distribution of its elements

@ lts “moments’:

> |ts expected value, E[X;] = p:.
» lts variance, Var[X;] = 02 = 7.
> Its autocovariance or autocorrelation of order k, Cov[ X, Xi—k] = Y«-
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Variance

The “second” moments play an important role in time series and have a
slight different definition:

Definition

The variance of X;, denoted by ~o(t), is given by:

Var(Xt) =E [(Xt — E(Xt))z]

Definition
The autocovariance of X; of order k, denoted by ~x(t), is given by:
Cov(Xt, Xe—k) = E[(Xe — E(X))(Xe—k — E(Xe—k))]

Definition
The autocorrelation of X; of order k, denoted by pk(t), is given by:
Corr(Xe, Xe—) = —e2de:Xek)

B \/Var(Xt)\/Var(Xt,k)
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The stationarity is an essential property to define a time series process:

Definition
A process is said to be covariance-stationary, or weakly stationary, if
its first and second moments are time invariant.

E(Y:) =E[Yea] =1 \A:
Var(Y:) =1 < o0 vVt
COV( Yt, Yt—k) = Yk W t, V k
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Weak stationarity

@ The third condition states that the autocovariances only depend on
the decay in the time but not in the time itself.

@ Hence, the structure of the serie does not change with the time.

o If a process is stationary, yx = v_k
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Mean reverting propriety

A stationary process has the propriety to be mean reverting:
@ it will fluctuate around its mean.
@ This mean will act as an attractor.

@ It will cross the mean line an infinite number of ways.
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Strong stationarity

Definition
f(Z1, 2>, ... 2¢) = f(Ziyk, Zogic, s Zesk) J

@ Implies weak stationarity

@ Definition not very useful as informations about the density function
are difficult to obtain
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ergodicity

Not absolutely useful...
Definition

limp—oo E[|Y(¥is - -3 Yitk)Z(YVitns - - - s Yient1)|] =
EIYWi, - Yiri)] - ELZiwns - - -5 Yient1)]

[} = =
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Example 1

We define now the simplest stationary process:
Definition

An independent white noise process is a sequence of independant
elements with same expected value and variance.

We will denote it &, ~ iid(0, o2)

Matthieu Stigler Matthieu.Stigler@gmail.c Stationarity November 14, 2008 22 / 56



Example 2

Consider the first order auto-regressive process AR(1) with a constant:

Yi=cH+oYeii+e e ~iid(0,0%)

Theorem
An AR(1) process is asymptotically stationary if |p| < 1 J

We will need fot its proof to remember the properties of a geometric
progression:

o] <1 Y Xa=1+a+a?+ad+...= 1

Lemma (Infinite geometric progression)
l1-a J
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Proof.
The AR(1) can be written as:

t—1 t—1
Yi=c) o +o' Yo+ ) ¢leri
i=0 i=0

If || < 1, it can be simplified into:

t—1

C o
Y:— ! .
t 1_(p+igzogost ;

We have then:

o E(Xt) = lng
o Var(X:) = 17,

(] COV(Xt,Xt_J‘) =7

)
29
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Corollary
An AR(1) process is nonstationary if |p| > 1. Furthemore, if:
@ || =1 it is difference stationary

o |p| > 1 it is explosive.
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Proof.

The AR(1) process without constant Y; = ¢Y;_1 + &+ et ~ iid(0, o?)
with |¢| =1 can be rewritten as:

t—1
Y: = Yo+ Z Et—j
i=0

We have then:
e E(X:) =Y
o Var(X;) = to?
o Cov(X¢, Xe—j) = (t — j)o?
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The AR(1) process with |¢| =1 is called a random walk. It is said to be
difference stationary.

Definition

The difference operator takes the difference between a value of a time serie
and its lagged value. AX; = X; — X1

Definition
A process is said to be difference stationary if it becomes stationary after
being differenced once.

Note: a difference stationary process is also called integrated of order 1
and denoted by X; ~ /(1)

Matthieu Stigler Matthieu.Stigler@gmail.c Stationarity November 14, 2008 29 / 56



Theorem

A random walk is difference stationary.

Proof.
AY;=Yi—Yea=Yia+e—Ye1=¢

o =) DAy
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Stationary AR(1)

Random Walk

Yi=@Yi1+er
lo| < 1,e¢ ~ iid(0, 0?)
Ye= Yo+ Y02 oSDEt 1

E(Y,) = 0( if Yo = 0)
2
1—p?

COV(\/t-7 Yt—j) = %702

Var(Y:) =

Corr( Yt, Yt—j) = QOI

Yy ©°
Og—i —0

Is mean reverting
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Yi = Y1+t

er ~ iid(0,02)

Ye= Yo+ Y2 oat 1
E(Y:) = 0( if Yo = 0)
Var(Y;) =

Cov( Yy, Yej) = (t — j)o?

Corr( Yta Yf—j) = t;ts ﬁ) 1

oY
66(’ i 1

Tends to move away from the mean
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Simulation of AR(1) and RW

Random Walk and AR

L= mf)'f’i‘):‘ AP A A
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Simulation of AR(1) and RW

Random Walk and AR
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— AR(1):p=04
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Simulation of AR(1) and RW

Random Walk and AR

N1 — RW
— AR(1):p=0.9
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Stationary AR(1)

Random Walk

Yi=@Yi1+er
lo| < 1,e¢ ~ iid(0, 0?)
Ye= Yo+ Y02 oSDEt 1

E(Y,) = 0( if Yo = 0)
2
1—p?

COV(\/t-7 Yt—j) = %702

Var(Y:) =

Corr( Yt, Yt—j) = QOI

dYy ©°
Og—i —0

Is mean reverting
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The random walk with drift

Xt:a+Xt_1+€t €tNiid(0,0'2)
Can be rewritten as:

t—1
Yi=at+ Yy +Zat_,-
i=0
Expectation is also time-varying:
o E(X:) = Yo+ at

e Var(X;) =...=f(t)

(] COV(Xt,Xt_J‘) =...= f(t)
But it is still difference stationary:
Proof.

AYt: Yt—Yt_1:a+ Yt_1+€t—Yt_1:a+€t

of
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Trend stationarity

Ye=a+bt+oYi1+e

-1 -1 -1
Ye=a) @ +a> ¢+ Yo+ > e
i=0 i=0 i=0

If || < 1, it can be simplified into:

t—1 t—1
a i . i
Yt:m—i-bg '(t—1i)+ E p'eei
i=0 i=0
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Proof.

Ye=a+bt+¢Yi1+er
=a+bt+p(at+b(t—1)+pYio+er2)+eri
= a(l + @) + bt + b(t — 1) + ©? Yo + pern + 11
= a(1l+ @) + bt + b(t — 1) + p*(a+ b(t — 2) + ¢Ye 3+ &13)
+ pet—2 + €1
= a(l+ o+ @)+ b(t + ¢t — 1) + ¢*(t = 2)) + ¢’ Vi3
+ per—3 + per—2 + €1

t—1 t—1 t—1
=p"Yo+ad @ +b) Pl(t—i)+> e
i=0 i=0 i=0

t—1 t—1
a B ; B
R bY @' (=) + ) ¢leri
i=0 i=0

—
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Thus the model Y = a+ bt + ¢pY:i_1 + ¢t—1 has:
e E(X:) =f(t)
e Var(X;) # f(t)
o Cov(X¢, Xe—j) # f(t)

It is non-stationary as its expectation is time varying. However, its
variance does not vary with time!

This process is called trend-stationary: if one detrends it, the series is
stationary:
Proposition

Yi=a+ bt + pY:_1+ et_1 is not stationary
Y: — bt = a+ ¢ Yi_1 + €+_1 Is stationary
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Comparisons between Trend and difference stationarity:

TS

DS

DGP:
DGP’
E(Y:)
Var(Y})

COV( Yt; Yt—j)

OYe
0gt—j

Elyess — }A/t+s|t]2

Ye=a+0t+e:

a+ [t

Ye=c+ Yi—1+ €t
Ye = Yo+ ct+ Zf;é Et—1
Yo + ct

to2

(t —Jj)o?

= (s)
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forecant

054 confidenoe interval

Tise
(w) Trend-gatipnary proces
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So both TS and DS exhibit a trend tendency but with stable or increasing
variance.

This trend is said:
@ Deterministic: TS process

@ Stochastic: DS process
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Nelson and Plosser (1982) study

Nelson and Plosser (1982) investigate 14 time series:
@ Real GNP

Nominal GNP

Real Per Capita GNP

Industrial Production Index

Total Employment

Total Unemployment Rate

GNP Deflator

Consumer Price Index

Nominal Wages

Real Wages

Money Stock (M2)

Velocity of money

Bond Yield (30-year corporate bonds)

@ Stock Prices
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Nelson and Plosser (1982) study
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Nelson and Plosser
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Results of the test of Trend stationary vs Difference stationary:

13 series can be viewed as DS, one (unemployment) as TS.

Results J

The distinction between the two classes of processes is
fundamental and aceptance of the purely stochastic view of
non-stationarity has broad implications for our understanding of
the nature of economic phenomena
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We conclude that macroeconomic models that focus on
monetary disturbances as a source of purely transitory
(stationary) fluctuations may never be successful in explaining a
very large fraction of output fluctuations and that stochastic
variation due to real factors is an essential element of any model
of economic fluctuations.
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