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Recall: auto-covariance

Definition (autocovariance)
Cov (X, Xi—k) = k(t) = E[(Xe — p)(Xe—k — )]

Definition (Autocorrelation)

Corr(Xe, Xe—k) = pi(t) = %

Proposition
Corr(Xe, Xe—o) = Var(Xy)

Corr(Xe, Xe—j) = ¢/ depend on the lage: plot its values at each lag.
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Recall: stationarity

The stationarity is an essential property to define a time series process:
Definition

A process is said to be covariance-stationary, or weakly stationary, if
its first and second moments are time invariant.

E(Y:) =E[Yea] =1 \A:
Var(Y:) =7 < o0 vVt
COV( Yt, Yt—k) = Yk W t, Y k
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Recall: The AR(1)

The AR(1): Yi=c+ ¢Yi_1+e: et ~ iid(0, 0?)
with |p] < 1, it can be can be written as:

t—1
C .
Y: = + E p'erj

1-¢ i=0 I

Its 'moments’ do not depend on the time: :

o E(Xt) = 15(‘0

e Var(X;) = 1:’;2

o Cov(X¢, Xi—j) = %502

o Corr(Xe, Xe—j) = ¢/
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Outline

@ AR(p) models
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Outline

© AR(p) models

@ Autocorrelation of AR(1)
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Autocorrelation function

A usefull plot to understand the dynamic of a process is the
autocorrelation function:
Plot the autocorrelation value for different lags.
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AR(1) with —1 < ¢ <0

in the AR(1): Y =c+ oY1+ e et ~ iid(0, 0?)
with —1 < ¢ <0
we have negative autocorrelation.
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Definition (AR(p))
yie=Cc+ o1yt 1+ Payr 2+ ...+ bpyrpt+et

@ Expectation?
@ Variance?
@ Auto-covariance?

@ Stationary conditions?
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Lag operator

Definition (Backshift /Lag operator)
LXe = Xi1

Proposition
See that: L2X; = Xi_»

Proposition (Generalisation)
LkXt = Xt—k
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Lag polynomial

We can thus rewrite:
Example (AR(2))
Xe=c+ o1 Xe—1 + paXe—o + €t

(1 — (plL — g02L2)Xt =cCc+e¢&t

Definition (lag polynomial)

We call lag polynomial: ®(L) = (1 — 1L — @al® — ... — ¢pLP)

So we write compactly:

Example (AR(2))
¢(L)Xt =Cc+¢et

Matthieu Stigler () Stationary models

November 14, 2008

15 / 65



Matthieu Stigler ()

Outline

© AR(p) models

@ Stationarity Conditions

Stationary models



Definition (Characteristic polynomial)
(1 -1z = p22° — ... — ¢p2P) J

Stability condition:

Proposition
The AR(p) process is stable if the roots of the lag polynomial lie outside
the unit circle.

Example (AR(1))

The AR(1): X; = oXi—1 + et

can be written as: (1 — L)X = &;
Solving it gives: 1 —px =0 = x = %
And finally: [2] > 1= |p[ <1
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Proof.
@ Write an AR(p) as AR(1)

@ Show conditions for the augmented AR(1)

© Transpose the result to the AR(p)
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Proof.
The AR(p):

Vi =¢1yi—1+ Payio+ ...+ Ppyi—p + €t

can be recast as the AR(1) model:

§e=F&—1+et
_ e _
Yt—1
Yt—2

L Yt—p+1 |

Yt
Yt—1

Yt—p+1
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Proof.
Starting from the augmented AR(1) notation:

§e=F&-1+e:
Similarly as in the simple case, we can write the AR model recursively:
£e=F'6+er+Fer1+ Flera+...+ Fler + Fleo

Remember the eigenvalue decomposition: F = TAT !
and the propriety that: F/ = TAVT!

with
X 0 ... 0
J
po |0
0 0 ... XN
So the AR(1) model is stable if |\;] <1 Vi O
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Proof.

So the condition on F is that all A from |F — \/| =0 are < 1.
One can show that the eigenvalues of F are:

Proposition
NP — pIANPTL — o AP2 — Gp—1A—¢p =0

But the X are the reciprocal of the values z that solve the characteristic
polynomial of the AR(p):

(1— 1z — 222 — ... — ¢pzP) =0
So the roots of the polynomial should be > 1, or, with complex values,
outside the unit circle. [

v
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Stationarity conditions

The conditions of roots outside the unit circle lead to:
e AR(1): 9| <1
e AR(2):
» 1+ <1

» o1 — ¢ <1
> o] <1
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Example
Consider the AR(2) model:

Yt = 0.8Yt_1 + 0.0gyt_Q + ¢

Its AR(1) representation is:

|: Yt :| |:08 009:| |:yt—1:| |:6t:|
Yi—1 1 0 Yi—2 0
Hence its eigenvalues are taken from:

08—X 009 ., _
‘ 1 0_)\—)\ —0.8A—-0.09=0
And the eigenvalues are smaller than one:

> Re(polyroot(c(-0.09, -0.8, 1)))

[1] -0.1 0.9
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Example
Yt = 0.8Yt_1 + 0.09Yt_2 + &t

Its lag polynomial representation is: (1 — 0.8L — 0.09L2)X; = &;
lts characteristic polynomial is hence: (1 — 0.8x — 0.09x2) =0
whose solutions lie outside the unit circle:

> Re(polyroot(c(1, -0.8, -0.09)))
[1] 1.111111 -10.000000

And it is the inverse of the previous solutions:

> all.equal(sort(1/Re(polyroot(c(1, -0.8, -0.09)))), Re(polyroot(c(-0.09,
+ -0.8, 1))))

[1] TRUE
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Unit root and integration order

Definition
A process is said to be integrated of order d if it becomes stationary after
being differenced d times.

Proposition

An AR(p) process with k unit roots (or eigenvalues) is integrated of order
k.

Example

Take the random walk: X; = Xi_1 + ¢

Its polynomial is (1-L), and the roots is 1 —x =0=x =1
The eigenvalue of the trivial AR(1)is1 - A=0=\=1

So the random walk is integrated of order 1 (or difference stationary).
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Integrated process

Take an AR(p):

Vi = O1yt-1+ Qaye2+ ...+ Ppyrp + €t
With the lag polynomial:

O(L)X; = ¢

If one of its p (not necessarily distinct) eigenvalues is equal to 1, it can be
rewritten:

(1- L)' (L)X =&t
Equivalently:
&' (L)AX; = &;
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The AR(p) in detail

Moments of a stationary AR(p)

° E(Xt) = 15—

o Var(Xy) = pim + 22 + ...+ ©p7p + o
o Cov(Xt, Xe—j) = p17j-1 + @27j—2 + . + ©pYj—p

Note that ; = Cov(X:, X¢—;) so we can rewrite both last equations as:
M =@ 22+ opp t0°
Vo = P11ty e Ppip

They are known under the name of Yule-Walker equations.
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Yule-Walker equations

Dividing by g gives:
po = @1p1+ @22+ ...+ pppp+ 02
pj = @P1pj-1t+P2pj-2+ ...+ OpPjp

Example (AR(1))
We saw that:

e Var(X;) = 1:’;2

o Cov(X¢, Xi—j) = %502

o Corr(Xe, Xe—j) = ¢/

And we have effectively: p1 = ¢po = ¢ and p» = ¢p1 = ¢?

Utility:
@ Determination of autocorrelation function

@ Estimation
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Outline

@ AR(p) models

@ Estimation
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To estimate a AR(p) model from a sample of T we take t=T-p

e Methods of moments: estimate sample moments (the v;), and find
parameters (the ¢) correspondly
e Unconditional ML: assume y,,...,y1 ~ N(0,02). Need numerical
optimisation methods.
e Conditional Maximum likelihood (=OLS): estimate
f(yr,tT—1,- - Yp+1|¥p, - - -, ¥1;0) and assume e ~ N(0,0?) and
that yp,...,y1 are given
What if errors are not normally distributed? Quasi-maximum likelihood
estimator, is still consistent (in this case) but standard erros need to be
corrected.
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Moving average models

Two significations!
@ regression model

@ Smoothing technique!
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MA(1)

Definition (MA(1))
Yt=C+€t+96t_]_ J

o E( Yt) =cC
o Var(Y:) = (1 + 6?)o?
e ifj=1
o Cov(X¢, Xi—j) = 7 I J
0 ifj>1
2] . .
At fj=1
o Corr(Xe, X;_j) = ¢ (+6%) J
0 if j>1
Proposition
A MA(1) is stationnary for every 6 J
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MA(q)
The MA(q) is given by:

Yi =cHer+01€0—1 +bher o+ ...+ 0164

] E( Yt) =C
o Var(Yy) = (1+63 +605+...+602)0?
(] COV(Xt,Xt_J) =
0'2(9j + 0j+101 + 9j+292 + ...+ 9q9q_1) ifj=1
0 if j>1
0 ifj=1
) Corr(Xt, Xt—J) (1+92) I J
0 ifj>1
Proposition
A MA(q) is stationary for every sequence {61,602, ...,04}
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The MA(o0)

Take now the MA(c0):

00
Yi =€+ 016021 + 0260+ ... + O€oo = Zaj&‘t,j
=0

Definition (Absolute summability)

A sequence is absolute summable if 3_°, |aj| <0

Proposition

The MA() is stationary if the coefficients are absolute summable.
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Back to AR(p)

Recall:

Proposition

If the characteristic polynomial of a AR(p) has roots =1, it is not
stationary.

See that:

(1= 1ye—1— PoYe—2 — ... — OpYi—p)yt =

(I—ail)(1—ool)...(1 —apl)y: =&t

It has a MA(oo) representation if: ag # 1:
1

Yt = G—anD)(I-oal)..(I—apl)°t
Furthermore, if the o (the eigenvalues of the augmented AR(1)) are
smaller than 1, we can write it:

o0
Yt = Z Biet
i=0
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Estimation of a MA(1)

We do not observe neither £; nor £;_1

But if we know &g, we know g1 = Y; — feg

So obtain them recursively and minimize the conditional SSR:
S(0) = i (ve —ee1)?

This recquires numerical optimization and works only if |6| < 1.
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ARMA models

The ARMA model is a composite of AR and MA:

Definition (ARMA(p,q))
Xe = c+1Xe—1+¢aXe2+. . A PpXe_pter—1+b1er 14026t 2+ '+0€t_qJ

It can be rewritten properly as:
q)(L) Yt =cCc+ e(L)Et

Theorem

The ARMA(p,q) model is stationary provided the roots of the ®(L)
polynomial lie outside the unit circle.

So only the AR part is involved!
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Autocorrelation function of a ARMA(p,q)

Proposition

After q lags, the autocorrelation function follows the pattern of the AR
component.

Remember: this is then given by the Yule-Walker equations.
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ARIMA(p.d,q)

Now we add a parameter d representing the order of integration (so the |
in ARIMA)

Definition (ARIMA(p,d,q))
ARIMA(p,d,q): ®(L)AYY, = O(L)e,

Example (Special cases)
@ White noise: ARIMA(0,0,0) X; = &;
e Random walk : ARIMA(0,1,0): AX; =e; = X; = Xi—1 + &
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Estimation and inference

The MLE estimator has to be found numerically.

Provided the errors are normaly distributed, the estimator has the usual
asymptotical properties:

o Consistent
@ Asymptotically efficients
@ Normally distributed

If we take into account that the variance had to be estimated, one can
rather use the T distribution in small samples.
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Outline

© MA models

@ The Box-Jenkins approach

Matthieu Stigler ()

Stationary models



The Box-Jenkins approach

@ Transform data to achieve stationarity
@ Identify the model, i.e. the parameters of ARMA(p,d,q)
© Estimation

@ Diagnostic analysis: test residuals
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Step 1

Transformations:
o Log
@ Square root
o Differenciation

A_
o Box-Cox transformation: Y { Yt/\ 1 for A7 0
log(Y — t) for A=0
Is log legitimate?
@ Process is: y;e%t Then z; = log(y:) = dt and remove trend
@ Process is y+ = yt—1 + & Then (by log(1 + x) = x)

Alog(y:) = *—=*
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Step 2

Identification of p,q (d should now be 0 after convenient transformation)
Principle of parsimony: prefer small models Recall that

e incoporating variables increases fit (R?) but reduces the degrees of
freedom and hence precision of estimation and tests.

@ A AR(1) has a MA(0) representation

o If the MA(q) and AR(p) polynomials have a common root, the
ARMA(p,q) is similar to ARMA(p-1,g-1).

@ Usual techniques recquire that the MA polynomial has roots outside
the unit circle (i.e. is invertible)
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Step 2: identification

How can we determine the parameters p,q?

@ Look at ACF and PACF with confidence interval
@ Use information criteria

> Akaike Criterion (AIC)
» Schwarz criterion (BIC)

Definition (1C)

AIC(p) = nlog 52 +2p
BIC(p) = nlog 5% + plogn
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Step 3: estimation

Estimate the model...

R function: arima() argument: order=c(p,d,q)
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Step 4: diagnostic checks

Test if the residuals are white noise:
@ Autocorrelation
@ Heteroscedasticity
© Normality
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> library(forecast)
This is forecast 1.17

> fit <- auto.arima(CPI2, start.p = 1, start.q = 1)
> fit

Series: CPI2
ARIMA(2,0,1)(2,0,2)[12] with zero mean

Coefficients:
arl ar?2 mal sarl sar?2 smal sma?2
0.2953 -0.2658 -0.9011 0.6021 0.3516 -0.5400 -0.2850
s.e. 0.0630 0.0578 0.0304 0.1067 0.1051 0.1286 0.1212

sigma”2 estimated as 4.031e-05: log likelihood = 1146.75
AIC = -2277.46  AICc = -2276.99 BIC = -2247.44

> res <- residuals(fit)
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> Box.test (res)

Box-Pierce test
data:

res

X-squared = 0.0736, df = 1, p-value = 0.7862

Matthieu Stigler ()

Stationary models



Sample Quantiles
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Outline

o Forecasti ng
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Notation (Forecast)

j\/t'i‘j = Et(}’t—f—]) = E(}/t-f—j‘}/t)}/t—l; e e 3 &t Et—1,-- ) is the conditional

expectation of y;; given the information available at t.

Definition (J-step-ahead forecast error)

e:(j) = Yti+j — )A’t+j

Definition (Mean square prediction error)

MSPE = L3 €?

Matthieu Stigler ()

Stationary models

November 14, 2008

64 / 65



R implementation

To run this file you will need:
@ R Package forecast
@ R Package TSA

o Data file AjaySeries2.csv put it in a folder called Datasets in the same
level than your.Rnw file

@ (Optional) File Sweave.sty which change output style: result is in
blue, R commands are smaller. Also in same folder as .Rnw file.
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