# Stationary models MA, AR and ARMA

Matthieu Stigler

November 14, 2008

Version 1.1

This document is released under the Creative Commons Attribution-Noncommercial 2.5 India license.

#### Lectures list

- Stationarity
- ARMA models for stationary variables
- Seasonality
- Non-stationarity
- Non-linearities
- Multivariate models
- Structural VAR models
- Cointegration the Engle and Granger approach
- Cointegration 2: The Johansen Methodology
- Multivariate Nonlinearities in VAR models
- Multivariate Nonlinearities in VECM models

2 / 65

## Outline

- 1 Last Lecture
- 2 AR(p) models
  - Autocorrelation of AR(1)
  - Stationarity Conditions
  - Estimation
- MA models
  - ARMA(p,q)
  - The Box-Jenkins approach
- Forecasting

#### Recall: auto-covariance

#### Definition (autocovariance)

$$Cov(X_t, X_{t-k}) \equiv \gamma_k(t) \equiv E[(X_t - \mu)(X_{t-k} - \mu)]$$

## Definition (Autocorrelation)

$$\mathsf{Corr}(X_t, X_{t-k}) \equiv \rho_k(t) \equiv rac{\mathsf{Cov}(X_t, X_{t-k})}{\mathsf{Var}(X_t)}$$

# Proposition

$$Corr(X_t, X_{t-0}) = Var(X_t)$$

 $Corr(X_t, X_{t-i}) = \phi^j$  depend on the lage: plot its values at each lag.

4□ > 4□ > 4 = > 4 = > = 90

# Recall: stationarity

The stationarity is an essential property to define a time series process:

#### **Definition**

A process is said to be **covariance-stationary**, or **weakly stationary**, if its first and second moments are time invariant.

$$\begin{aligned} \mathsf{E}(Y_t) &= \mathsf{E}[Y_{t-1}] = \mu & \forall \ t \\ \mathsf{Var}(Y_t) &= \gamma_0 < \infty & \forall \ t \\ \mathsf{Cov}(Y_t, Y_{t-k}) &= \gamma_k & \forall \ t, \ \forall \ k \end{aligned}$$

# Recall: The AR(1)

The AR(1):  $Y_t = c + \varphi Y_{t-1} + \varepsilon_t$   $\varepsilon_t \sim iid(0, \sigma^2)$  with  $|\varphi| < 1$ , it can be can be written as:

$$Y_t = \frac{c}{1 - \varphi} + \sum_{i=0}^{t-1} \varphi^i \varepsilon_{t-i}$$

Its 'moments' do not depend on the time: :

- $\mathsf{E}(X_t) = \frac{c}{1-\varphi}$
- $\operatorname{Var}(X_t) = \frac{\sigma^2}{1-\varphi^2}$
- $Cov(X_t, X_{t-j}) = \frac{\varphi^j}{1-\varphi^2}\sigma^2$
- $Corr(X_t, X_{t-j}) = \phi^j$

# Outline

- Last Lecture
- 2 AR(p) models
  - Autocorrelation of AR(1)
  - Stationarity Conditions
  - Estimation
- MA models
  - ARMA(p,q)
  - The Box-Jenkins approach
- Forecasting

# Outline

- Last Lecture
- 2 AR(p) models
  - Autocorrelation of AR(1)
  - Stationarity Conditions
  - Estimation
- MA models
  - ARMA(p,q)
  - The Box-Jenkins approach
- Forecasting

#### Autocorrelation function

A usefull plot to understand the dynamic of a process is the autocorrelation function:

Plot the autocorrelation value for different lags.



lagk Developed 14 2000 10 / 65

# AR(1) with $-1 < \phi < 0$

in the AR(1): 
$$Y_t = c + \varphi Y_{t-1} + \varepsilon_t$$
  $\varepsilon_t \sim iid(0, \sigma^2)$  with  $-1 < \phi < 0$  we have negative autocorrelation.

11 / 65



10 12 14

80 100

10 12 14

8

6 8

2

2

# Definition (AR(p))

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t$$

- Expectation?
- Variance?
- Auto-covariance?
- Stationary conditions?

# Lag operator

# Definition (Backshift /Lag operator)

$$LX_t = X_{t-1}$$

#### Proposition

See that:  $L^2X_t = X_{t-2}$ 

# Proposition (Generalisation)

$$L^k X_t = X_{t-k}$$

# Lag polynomial

We can thus rewrite:

Example 
$$(AR(2))$$

$$X_t = c + \varphi_1 X_{t-1} + \varphi_2 X_{t-2} + \varepsilon_t$$

$$(1 - \varphi_1 L - \varphi_2 L^2) X_t = c + \varepsilon_t$$

# Definition (lag polynomial)

We call lag polynomial: 
$$\Phi(L) = (1 - \varphi_1 L - \varphi_2 L^2 - \ldots - \phi_p L^p)$$

So we write compactly:

# Example (AR(2))

$$\Phi(L)X_t = c + \varepsilon_t$$

# Outline

- Last Lecture
- 2 AR(p) models
  - Autocorrelation of AR(1)
  - Stationarity Conditions
  - Estimation
- MA models
  - ARMA(p,q)
  - The Box-Jenkins approach
- 4 Forecasting

## Definition (Characteristic polynomial)

$$(1-\varphi_1z-\varphi_2z^2-\ldots-\phi_pz^p)$$

Stability condition:

## Proposition

The AR(p) process is stable if the roots of the lag polynomial lie outside the unit circle.

# Example (AR(1))

The AR(1):  $X_t = \varphi X_{t-1} + \varepsilon_t$ 

can be written as:  $(1 - \varphi L)X_t = \varepsilon_t$ 

Solving it gives:  $1 - \varphi x = 0 \Rightarrow x = \frac{1}{\varphi}$ 

And finally:  $|\frac{1}{\varphi}| > 1 \Rightarrow |\varphi| < 1$ 

- Write an AR(p) as AR(1)
- 2 Show conditions for the augmented AR(1)
- Transpose the result to the AR(p)



The AR(p):

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + \varepsilon_t$$

can be recast as the AR(1) model:

$$\xi_t = F\xi_{t-1} + \varepsilon_t$$

$$\begin{bmatrix} y_t \\ y_{t-1} \\ y_{t-2} \\ \vdots \\ y_{t-p+1} \end{bmatrix} = \begin{bmatrix} \phi_1 & \phi_2 & \phi_3 & \dots & \phi_{p-1} & \phi_p \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \end{bmatrix} \begin{bmatrix} y_{t-1} \\ y_{t-2} \\ y_{t-3} \\ \vdots \\ y_{t-p} \end{bmatrix} + \begin{bmatrix} \varepsilon_t \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\begin{cases} y_t &= c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t \\ y_{t-1} &= y_{t-1} \\ \dots \\ y_{t-p+1} &= y_{t-p+1} \end{cases}$$

Starting from the augmented AR(1) notation:

$$\xi_t = F\xi_{t-1} + \varepsilon_t$$

Similarly as in the simple case, we can write the AR model recursively:

$$\xi_t = F^t \xi_0 + \varepsilon_t + F \varepsilon_{t-1} + F^2 \varepsilon_{t-2} + \ldots + F^{t-1} \varepsilon_1 + F^t \varepsilon_0$$

Remember the eigenvalue decomposition:  $F=T\Lambda T^{-1}$  and the propriety that:  $F^j=T\Lambda^j T^{-1}$  with

$$\Lambda^{j} = \begin{bmatrix}
\lambda_{1}^{j} & 0 & \dots & 0 \\
0 & \lambda_{2}^{j} & \dots & 0 \\
\vdots & \vdots & \dots & \vdots \\
0 & 0 & \dots & \lambda_{3}^{j}
\end{bmatrix}$$

So the AR(1) model is stable if  $|\lambda_i| < 1 \quad \forall i$ 

So the condition on F is that all  $\lambda$  from  $|F - \lambda I| = 0$  are < 1. One can show that the eigenvalues of F are:

#### Proposition

$$\lambda^{p} - \phi_1 \lambda^{p-1} - \phi_2 \lambda^{p-2} - \dots - \phi_{p-1} \lambda - \phi_p = 0$$

But the  $\lambda$  are the reciprocal of the values z that solve the characteristic polynomial of the AR(p):

$$(1 - \varphi_1 z - \varphi_2 z^2 - \ldots - \phi_p z^p) = 0$$

So the roots of the polynomial should be > 1, or, with complex values, outside the unit circle.





# Stationarity conditions

The conditions of roots outside the unit circle lead to:

- AR(1):  $|\phi| < 1$
- AR(2):
  - $\phi_1 + \phi_2 < 1$
  - $\phi_1 \phi_2 < 1$
  - ▶  $|\phi_2| < 1$

#### Example

Consider the AR(2) model:

$$Y_t = 0.8Y_{t-1} + 0.09Y_{t-2} + \varepsilon_t$$

Its AR(1) representation is:

$$\begin{bmatrix} y_t \\ y_{t-1} \end{bmatrix} = \begin{bmatrix} 0.8 & 0.09 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} y_{t-1} \\ y_{t-2} \end{bmatrix} + \begin{bmatrix} \varepsilon_t \\ 0 \end{bmatrix}$$

Hence its eigenvalues are taken from:

$$\begin{vmatrix} 0.8 - \lambda & 0.09 \\ 1 & 0 - \lambda \end{vmatrix} = \lambda^2 - 0.8\lambda - 0.09 = 0$$

And the eigenvalues are smaller than one:

> Re(polyroot(c(-0.09, -0.8, 1)))

#### Example

$$Y_t = 0.8Y_{t-1} + 0.09Y_{t-2} + \varepsilon_t$$

Its lag polynomial representation is:  $(1 - 0.8L - 0.09L^2)X_t = \varepsilon_t$ Its characteristic polynomial is hence:  $(1 - 0.8x - 0.09x^2) = 0$ whose solutions lie outside the unit circle:

- > Re(polyroot(c(1, -0.8, -0.09)))
- [1] 1.111111 -10.000000

And it is the inverse of the previous solutions:

- > all.equal(sort(1/Re(polyroot(c(1, -0.8, -0.09)))), Re(polyroot(c(-0.09, -0.8, 1))))
- [1] TRUE

# Unit root and integration order

#### **Definition**

A process is said to be integrated of order d if it becomes stationary after being differenced d times.

#### Proposition

An AR(p) process with k unit roots (or eigenvalues) is integrated of order k.

## Example

Take the random walk:  $X_t = X_{t-1} + \varepsilon_t$ Its polynomial is (1-L), and the roots is  $1 - x = 0 \Rightarrow x = 1$ The eigenvalue of the trivial AR(1) is  $1 - \lambda = 0 \Rightarrow \lambda = 1$ 

So the random walk is integrated of order 1 (or difference stationary).

4 D > 4 A > 4 B > 4 B > B = 900

# Integrated process

Take an AR(p):

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + \varepsilon_t$$

With the lag polynomial:

$$\Phi(L)X_t = \varepsilon_t$$

If one of its p (not necessarily distinct) eigenvalues is equal to 1, it can be rewritten:

$$(1-L)\Phi'(L)X_t=\varepsilon_t$$

Equivalently:

$$\Phi'(L)\Delta X_t = \varepsilon_t$$

# The AR(p) in detail

## Moments of a **stationary** AR(p)

• 
$$\mathsf{E}(X_t) = \frac{c}{1-\varphi_1-\varphi_2-...-\varphi_p}$$

• 
$$Var(X_t) = \varphi_1 \gamma_1 + \varphi_2 \gamma_2 + \ldots + \varphi_p \gamma_p + \sigma^2$$

• 
$$Cov(X_t, X_{t-j}) = \varphi_1 \gamma_{j-1} + \varphi_2 \gamma_{j-2} + \ldots + \varphi_p \gamma_{j-p}$$

Note that  $\gamma_j \equiv \text{Cov}(X_t, X_{t-j})$  so we can rewrite both last equations as:

$$\begin{cases} \gamma_0 &= \varphi_1 \gamma_1 + \varphi_2 \gamma_2 + \ldots + \varphi_p \gamma_p + \sigma^2 \\ \gamma_j &= \varphi_1 \gamma_{j-1} + \varphi_2 \gamma_{j-2} + \ldots + \varphi_p \gamma_{j-p} \end{cases}$$

They are known under the name of **Yule-Walker** equations.

27 / 65

# Yule-Walker equations

# Dividing by $\gamma_0$ gives:

$$\begin{cases} \rho_0 = \varphi_1 \rho_1 + \varphi_2 \rho_2 + \dots + \varphi_p \rho_p + \sigma^2 \\ \rho_j = \varphi_1 \rho_{j-1} + \varphi_2 \rho_{j-2} + \dots + \varphi_p \rho_{j-p} \end{cases}$$

# Example (AR(1))

#### We saw that:

- $\operatorname{Var}(X_t) = \frac{\sigma^2}{1-\varphi^2}$
- $Cov(X_t, X_{t-j}) = \frac{\varphi^j}{1-\varphi^2}\sigma^2$
- $Corr(X_t, X_{t-j}) = \phi^j$

And we have effectively:  $\rho_1 = \phi \rho_0 = \phi$  and  $\rho_2 = \phi \rho_1 = \phi^2$ 

## Utility:

- Determination of autocorrelation function
- Estimation



# Outline

- Last Lecture
- 2 AR(p) models
  - Autocorrelation of AR(1)
  - Stationarity Conditions
  - Estimation
- MA models
  - ARMA(p,q)
  - The Box-Jenkins approach
- Forecasting

To estimate a AR(p) model from a sample of T we take t=T-p

- Methods of moments: estimate sample moments (the  $\gamma_i$ ), and find parameters (the  $\phi$ ) correspondly
- Unconditional ML: assume  $y_p, \ldots, y_1 \sim \mathcal{N}(0, \sigma^2)$ . Need numerical optimisation methods.
- Conditional Maximum likelihood (=OLS): estimate  $f(y_T, t_{T-1}, \ldots, y_{p+1} | y_p, \ldots, y_1; \theta)$  and assume  $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$  and that  $y_p, \ldots, y_1$  are given

What if errors are not normally distributed? *Quasi-maximum likelihood estimator*, is still consistent (in this case) but standard error need to be corrected.

# Outline

- Last Lecture
- AR(p) models
  - Autocorrelation of AR(1)
  - Stationarity Conditions
  - Estimation
- MA models
  - ARMA(p,q)
  - The Box-Jenkins approach
- 4 Forecasting

# Moving average models

#### Two significations!

- regression model
- Smoothing technique!

# MA(1)

## Definition (MA(1))

$$Y_t = c + \varepsilon_t + \theta \epsilon_{t-1}$$

• 
$$E(Y_t) = c$$

• 
$$Var(Y_t) = (1 + \theta^2)\sigma^2$$

$$\bullet \operatorname{Cov}(X_t, X_{t-j}) = \begin{cases} \theta \sigma^2 & \text{if } j = 1 \\ 0 & \text{if } j > 1 \end{cases}$$

$$\bullet \; \mathsf{Corr}(X_t, X_{t-j}) = \begin{cases} \frac{\theta}{(1+\theta^2)} & \text{if } j = 1 \\ 0 & \text{if } j > 1 \end{cases}$$

#### Proposition

A MA(1) is stationnary for every  $\theta$ 







$$\theta = 2$$



$$\theta = -0.5$$















# MA(q)

The MA(q) is given by:

$$Y_t = c + \varepsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \ldots + \theta_1 \epsilon_{t-q}$$

- $E(Y_t) = c$
- $Var(Y_t) = (1 + \theta_1^2 + \theta_2^2 + \ldots + \theta_q^2)\sigma^2$
- $\begin{aligned} \bullet \ \operatorname{Cov}(X_t, X_{t-j}) &= \\ \begin{cases} \sigma^2(\theta_j + \theta_{j+1}\theta_1 + \theta_{j+2}\theta_2 + \ldots + \theta_q\theta_{q-1}) & \text{if } j = 1 \\ 0 & \text{if } j > 1 \end{cases} \end{aligned}$
- $\bullet \; \mathsf{Corr}(X_t, X_{t-j}) = \begin{cases} \frac{\theta}{(1+\theta^2)} & \text{if } j = 1\\ 0 & \text{if } j > 1 \end{cases}$

## Proposition

A MA(q) is stationary for every sequence  $\{\theta_1, \theta_2, \dots, \theta_q\}$ 





$$\Theta = c(-0.5, -1.5)$$



$$\Theta = c(-0.6, 0.3, -0.5, 0.5)$$



$$\Theta = c(-0.6, 0.3, -0.5, 0.5, 3, 2, -1)$$



Lank (마) (라) (로) (로) (로) (오)

# The $MA(\infty)$

Take now the  $MA(\infty)$ :

$$Y_t = \varepsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \ldots + \theta_\infty \epsilon_\infty = \sum_{j=0}^\infty \theta_j \varepsilon_{t-j}$$

## Definition (Absolute summability)

A sequence is absolute summable if  $\sum_{i=0}^{\infty} |\alpha_i| < 0$ 

## Proposition

The  $MA(\infty)$  is stationary if the coefficients are absolute summable.

# Back to AR(p)

Recall:

## Proposition

If the characteristic polynomial of a AR(p) has roots =1, it is not stationary.

#### See that:

$$\begin{array}{l} (1-\phi_1y_{t-1}-\phi_2y_{t-2}-\ldots-\phi_py_{t-p})y_t = \\ (1-\alpha_1L)(1-\alpha_2L)\ldots(1-\alpha_pL)y_t = \varepsilon_t \\ \text{It has a MA}(\infty) \text{ representation if: } \alpha_1 \neq 1 \text{:} \\ y_t = \frac{1}{(1-\alpha_1L)(1-\alpha_2L)\ldots(1-\alpha_pL)}\varepsilon_t \end{array}$$

Furthermore, if the  $\alpha_i$  (the eigenvalues of the augmented AR(1)) are smaller than 1, we can write it:

$$y_t = \sum_{i=0}^{\infty} \beta_i \varepsilon_t$$

# Estimation of a MA(1)

We do not observe neither  $\varepsilon_t$  nor  $\varepsilon_{t-1}$ But if we know  $\varepsilon_0$ , we know  $\varepsilon_1 = Y_t - \theta \varepsilon_0$ So obtain them recursively and minimize the conditional SSR:

$$S(\theta) = \sum_{t=1}^{T} (y_t - \varepsilon_{t-1})^2$$

This recquires numerical optimization and works only if  $|\theta| < 1$ .

## Outline

- Last Lecture
- 2 AR(p) models
  - Autocorrelation of AR(1)
  - Stationarity Conditions
  - Estimation
- MA models
  - ARMA(p,q)
  - The Box-Jenkins approach
- 4 Forecasting

## ARMA models

The ARMA model is a composite of AR and MA:

# Definition (ARMA(p,q))

$$X_{t} = c + \phi_{1} X_{t-1} + \phi_{2} X_{t-2} + \ldots + \phi_{p} X_{t-p} + \varepsilon_{t-1} + \theta_{1} \varepsilon_{t-1} + \theta_{2} \varepsilon_{t-2} + \ldots + \theta \varepsilon_{t-q}$$

It can be rewritten properly as:

$$\Phi(L)Y_t = c + \Theta(L)\varepsilon_t$$

#### **Theorem**

The ARMA(p,q) model is stationary provided the roots of the  $\Phi(L)$  polynomial lie outside the unit circle.

So only the AR part is involved!



# Autocorrelation function of a ARMA(p,q)

## Proposition

After q lags, the autocorrelation function follows the pattern of the AR component.

Remember: this is then given by the Yule-Walker equations.

#### phi(1)=0.5, theta(1)=0.5

# 2 4 6 8 10

Lag k

#### phi(1)=-0.5, theta(1)=0.5



phi(1)=0.5, theta(1:3)=c(0.5,0.9,-0.3 phi(1)=-0.5, theta(1:3)=c(0.5,0.9,-0.3





# ARIMA(p,d,q)

Now we add a parameter d representing the order of integration (so the I in ARIMA)

# Definition (ARIMA(p,d,q))

 $ARIMA(p,d,q): \Phi(L)\Delta^d Y_t = \Theta(L)\varepsilon_t$ 

## Example (Special cases)

- White noise: ARIMA(0,0,0)  $X_t = \varepsilon_t$
- Random walk : ARIMA(0,1,0):  $\Delta X_t = \varepsilon_t \Rightarrow X_t = X_{t-1} + \varepsilon_t$

## Estimation and inference

The MLE estimator has to be found numerically.

Provided the errors are normaly distributed, the estimator has the usual asymptotical properties:

- Consistent
- Asymptotically efficients
- Normally distributed

If we take into account that the variance had to be estimated, one can rather use the  $\mathsf{T}$  distribution in small samples.

## Outline

- Last Lecture
- AR(p) models
  - Autocorrelation of AR(1)
  - Stationarity Conditions
  - Estimation
- MA models
  - ARMA(p,q)
  - The Box-Jenkins approach
- Forecasting

# The Box-Jenkins approach

- Transform data to achieve stationarity
- Identify the model, i.e. the parameters of ARMA(p,d,q)
- Stimation
- Diagnostic analysis: test residuals

# Step 1

#### Transformations:

- Log
- Square root
- Differenciation

• Box-Cox transformation: 
$$Y_t^{(\lambda)} \begin{cases} \frac{Y_t^{\lambda} - 1}{\lambda} & \text{for } \lambda \neq 0 \\ \log(Y - t) & \text{for } \lambda = 0 \end{cases}$$

## Is log legitimate?

- Process is:  $y_t e^{\delta t}$  Then  $z_t = \log(y_t) = \delta t$  and remove trend
- Process is  $y_t = y_{t-1} + \varepsilon_t$  Then (by  $\log(1+x) \cong x$ )  $\Delta \log(y_t) = \frac{y_t y_{t-1}}{y_t}$



# Step 2

Identification of p,q (d should now be 0 after convenient transformation) Principle of parsimony: prefer small models Recall that

- incoporating variables increases fit  $(R^2)$  but reduces the degrees of freedom and hence precision of estimation and tests.
- A AR(1) has a MA( $\infty$ ) representation
- If the MA(q) and AR(p) polynomials have a common root, the ARMA(p,q) is similar to ARMA(p-1,q-1).
- Usual techniques recquire that the MA polynomial has roots outside the unit circle (i.e. is invertible)

# Step 2: identification

How can we determine the parameters p,q?

- Look at ACF and PACF with confidence interval
- Use information criteria
  - Akaike Criterion (AIC)
  - Schwarz criterion (BIC)

# Definition (IC)

$$AIC(p) = n \log \hat{\sigma}^2 + 2p$$
  
 $BIC(p) = n \log \hat{\sigma}^2 + p \log n$ 

# Step 3: estimation

Estimate the model...

R function: arima() argument: order=c(p,d,q)

# Step 4: diagnostic checks

Test if the residuals are white noise:

- 4 Autocorrelation
- 4 Heteroscedasticity
- Normality





Time



#### linear trend





#### Smooth trend





#### Quadratic trend









### Diff2 of log



Time

#### Series CPI2





#### Series CPI2



Laα

```
> library(forecast)
This is forecast 1.17
> fit <- auto.arima(CPI2, start.p = 1, start.q = 1)</pre>
> fit.
Series: CPT2
ARIMA(2,0,1)(2,0,2)[12] with zero mean
Coefficients:
        ar1 ar2 ma1 sar1 sar2 sma1
                                                         sma2
     0.2953 - 0.2658 - 0.9011 0.6021 0.3516 - 0.5400 - 0.2850
s.e. 0.0630 0.0578 0.0304 0.1067 0.1051 0.1286 0.1212
sigma^2 estimated as 4.031e-05: log likelihood = 1146.75
AIC = -2277.46 AICc = -2276.99 BIC = -2247.44
> res <- residuals(fit)
```

#### Series res





#### Series res



> Box.test(res)

Box-Pierce test

data: res

X-squared = 0.0736, df = 1, p-value = 0.7862

#### Normal Q-Q Plot



#### density.default(x = res)



## Outline

- Last Lecture
- 2 AR(p) models
  - Autocorrelation of AR(1)
  - Stationarity Conditions
  - Estimation
- MA models
  - ARMA(p,q)
  - The Box-Jenkins approach
- 4 Forecasting

## Notation (Forecast)

 $\hat{y}_{t+j} \equiv \mathsf{E}_t(y_{t+j}) = \mathsf{E}(y_{t+j}|y_t,y_{t-1},\ldots,\varepsilon_t,\varepsilon_{t-1},\ldots)$  is the conditional expectation of  $y_{t+j}$  given the information available at t.

## Definition (J-step-ahead forecast error)

$$e_t(j) \equiv y_{t+j} - \hat{y}_{t+j}$$

## Definition (Mean square prediction error)

$$MSPE \equiv \frac{1}{H} \sum_{i=1}^{H} e_i^2$$

# R implementation

### To run this file you will need:

- R Package forecast
- R Package TSA
- Data file AjaySeries2.csv put it in a folder called Datasets in the same level than your.Rnw file
- (Optional) File Sweave.sty which change output style: result is in blue, R commands are smaller. Also in same folder as .Rnw file.