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Recall: auto-covariance

Definition (autocovariance)

Cov(Xt ,Xt−k) ≡ γk(t) ≡ E [(Xt − µ)(Xt−k − µ)]

Definition (Autocorrelation)

Corr(Xt ,Xt−k) ≡ ρk(t) ≡ Cov(Xt ,Xt−k )
Var(Xt)

Proposition

Corr(Xt ,Xt−0) = Var(Xt)

Corr(Xt ,Xt−j) = φj depend on the lage: plot its values at each lag.
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Recall: stationarity

The stationarity is an essential property to define a time series process:

Definition

A process is said to be covariance-stationary, or weakly stationary, if
its first and second moments are time invariant.

E(Yt) = E[Yt−1] = µ ∀ t
Var(Yt) = γ0 <∞ ∀ t
Cov(Yt ,Yt−k) = γk ∀ t, ∀ k
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Recall: The AR(1)

The AR(1): Yt = c + ϕYt−1 + εt εt ∼ iid(0, σ2)
with |ϕ| < 1, it can be can be written as:

Yt =
c

1− ϕ
+

t−1∑
i=0

ϕiεt−i

Its ’moments’ do not depend on the time: :

E(Xt) = c
1−ϕ

Var(Xt) = σ2

1−ϕ2

Cov(Xt ,Xt−j) = ϕj

1−ϕ2σ
2

Corr(Xt ,Xt−j) = φj
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Autocorrelation function

A usefull plot to understand the dynamic of a process is the
autocorrelation function:
Plot the autocorrelation value for different lags.
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AR(1) with −1 < φ < 0

in the AR(1): Yt = c + ϕYt−1 + εt εt ∼ iid(0, σ2)
with −1 < φ < 0
we have negative autocorrelation.
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Definition (AR(p))

yt = c + φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt

Expectation?

Variance?

Auto-covariance?

Stationary conditions?
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Lag operator

Definition (Backshift /Lag operator)

LXt = Xt−1

Proposition

See that: L2Xt = Xt−2

Proposition (Generalisation)

LkXt = Xt−k
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Lag polynomial

We can thus rewrite:

Example (AR(2))

Xt = c + ϕ1Xt−1 + ϕ2Xt−2 + εt

(1− ϕ1L− ϕ2L2)Xt = c + εt

Definition (lag polynomial)

We call lag polynomial: Φ(L) = (1− ϕ1L− ϕ2L2 − . . .− φpLp)

So we write compactly:

Example (AR(2))

Φ(L)Xt = c + εt
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Definition (Characteristic polynomial)

(1− ϕ1z − ϕ2z2 − . . .− φpzp)

Stability condition:

Proposition

The AR(p) process is stable if the roots of the lag polynomial lie outside
the unit circle.

Example (AR(1))

The AR(1): Xt = ϕXt−1 + εt
can be written as: (1− ϕL)Xt = εt
Solving it gives: 1− ϕx = 0⇒ x = 1

ϕ

And finally: | 1ϕ | > 1⇒ |ϕ| < 1

Matthieu Stigler () Stationary models November 14, 2008 17 / 65



Proof.
1 Write an AR(p) as AR(1)

2 Show conditions for the augmented AR(1)

3 Transpose the result to the AR(p)
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Proof.

The AR(p):

yt = φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt

can be recast as the AR(1) model:
ξt = F ξt−1 + εt

yt

yt−1

yt−2
...

yt−p+1

 =


φ1 φ2 φ3 . . . φp−1 φp

1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 0




yt−1

yt−2

yt−3
...

yt−p

+


εt
0
0
...
0




yt = c + φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt

yt−1 = yt−1

. . .

yt−p+1 = yt−p+1
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Proof.

Starting from the augmented AR(1) notation:

ξt = F ξt−1 + εt

Similarly as in the simple case, we can write the AR model recursively:

ξt = F tξ0 + εt + Fεt−1 + F 2εt−2 + . . .+ F t−1ε1 + F tε0

Remember the eigenvalue decomposition: F = T ΛT−1

and the propriety that: F j = T ΛjT−1

with

Λj =


λj

1 0 . . . 0

0 λj
2 . . . 0

...
... . . .

...

0 0 . . . λj
3


So the AR(1) model is stable if |λi | < 1 ∀i
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Proof.

So the condition on F is that all λ from |F − λI | = 0 are < 1.
One can show that the eigenvalues of F are:

Proposition

λp − φ1λ
p−1 − φ2λ

p−2 − . . .− φp−1λ− φp = 0

But the λ are the reciprocal of the values z that solve the characteristic
polynomial of the AR(p):
(1− ϕ1z − ϕ2z2 − . . .− φpzp) = 0
So the roots of the polynomial should be > 1, or, with complex values,
outside the unit circle.

Matthieu Stigler () Stationary models November 14, 2008 21 / 65



Stationarity conditions

The conditions of roots outside the unit circle lead to:

AR(1): |φ| < 1

AR(2):
I φ1 + φ2 < 1
I φ1 − φ2 < 1
I |φ2| < 1
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Example

Consider the AR(2) model:

Yt = 0.8Yt−1 + 0.09Yt−2 + εt

Its AR(1) representation is:[
yt

yt−1

]
=

[
0.8 0.09
1 0

] [
yt−1

yt−2

]
+

[
εt
0

]
Hence its eigenvalues are taken from:∣∣∣∣0.8− λ 0.09

1 0− λ

∣∣∣∣ = λ2 − 0.8λ− 0.09 = 0

And the eigenvalues are smaller than one:

> Re(polyroot(c(-0.09, -0.8, 1)))

[1] -0.1 0.9
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Example

Yt = 0.8Yt−1 + 0.09Yt−2 + εt

Its lag polynomial representation is: (1− 0.8L− 0.09L2)Xt = εt
Its characteristic polynomial is hence: (1− 0.8x − 0.09x2) = 0
whose solutions lie outside the unit circle:

> Re(polyroot(c(1, -0.8, -0.09)))

[1] 1.111111 -10.000000

And it is the inverse of the previous solutions:

> all.equal(sort(1/Re(polyroot(c(1, -0.8, -0.09)))), Re(polyroot(c(-0.09,

+ -0.8, 1))))

[1] TRUE
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Unit root and integration order

Definition

A process is said to be integrated of order d if it becomes stationary after
being differenced d times.

Proposition

An AR(p) process with k unit roots (or eigenvalues) is integrated of order
k.

Example

Take the random walk: Xt = Xt−1 + εt
Its polynomial is (1-L), and the roots is 1− x = 0⇒ x = 1
The eigenvalue of the trivial AR(1) is 1− λ = 0⇒ λ = 1

So the random walk is integrated of order 1 (or difference stationary).

Matthieu Stigler () Stationary models November 14, 2008 25 / 65



Integrated process

Take an AR(p):

yt = φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt

With the lag polynomial:

Φ(L)Xt = εt

If one of its p (not necessarily distinct) eigenvalues is equal to 1, it can be
rewritten:

(1− L)Φ′(L)Xt = εt

Equivalently:
Φ′(L)∆Xt = εt
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The AR(p) in detail

Moments of a stationary AR(p)

E(Xt) = c
1−ϕ1−ϕ2−...−ϕp

Var(Xt) = ϕ1γ1 + ϕ2γ2 + . . .+ ϕpγp + σ2

Cov(Xt ,Xt−j) = ϕ1γj−1 + ϕ2γj−2 + . . .+ ϕpγj−p

Note that γj ≡ Cov(Xt ,Xt−j) so we can rewrite both last equations as:{
γ0 = ϕ1γ1 + ϕ2γ2 + . . .+ ϕpγp + σ2

γj = ϕ1γj−1 + ϕ2γj−2 + . . .+ ϕpγj−p

They are known under the name of Yule-Walker equations.
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Yule-Walker equations

Dividing by γ0 gives:{
ρ0 = ϕ1ρ1 + ϕ2ρ2 + . . .+ ϕpρp + σ2

ρj = ϕ1ρj−1 + ϕ2ρj−2 + . . .+ ϕpρj−p

Example (AR(1))

We saw that:

Var(Xt) = σ2

1−ϕ2

Cov(Xt ,Xt−j) = ϕj

1−ϕ2σ
2

Corr(Xt ,Xt−j) = φj

And we have effectively: ρ1 = φρ0 = φ and ρ2 = φρ1 = φ2

Utility:

Determination of autocorrelation function

Estimation
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To estimate a AR(p) model from a sample of T we take t=T-p

Methods of moments: estimate sample moments (the γi ), and find
parameters (the φ) correspondly

Unconditional ML: assume yp, . . . , y1 ∼ N (0, σ2). Need numerical
optimisation methods.

Conditional Maximum likelihood (=OLS): estimate
f (yT , tT−1, . . . , yp+1|yp, . . . , y1; θ) and assume εt ∼ N (0, σ2) and
that yp, . . . , y1 are given

What if errors are not normally distributed? Quasi-maximum likelihood
estimator, is still consistent (in this case) but standard erros need to be
corrected.
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Moving average models

Two significations!

regression model

Smoothing technique!
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MA(1)

Definition (MA(1))

Yt = c + εt + θεt−1

E(Yt) = c

Var(Yt) = (1 + θ2)σ2

Cov(Xt ,Xt−j) =

{
θσ2 if j = 1

0 if j > 1

Corr(Xt ,Xt−j) =

{
θ

(1+θ2)
if j = 1

0 if j > 1

Proposition

A MA(1) is stationnary for every θ

Matthieu Stigler () Stationary models November 14, 2008 33 / 65



Time

0 20 40 60 80 100

−
2

0
1

2

θθ == 0.5

Time

0 20 40 60 80 100

−
4

0
2

4
6

8

θθ == 2

Time

0 20 40 60 80 100

−
3

−
1

1
2

3

θθ == −0.5

Time

0 20 40 60 80 100

−
4

0
2

4
6

θθ == −2

Matthieu Stigler () Stationary models November 14, 2008 34 / 65



2 4 6 8 10

0.
0

0.
4

0.
8

Lag k

ρρ k
θθ == 0.5

2 4 6 8 10

0.
0

0.
4

0.
8

Lag k

ρρ k

θθ == 3

2 4 6 8 10

−
1.

0
0.

0
0.

5
1.

0

Lag k

ρρ k

θθ == −0.5

2 4 6 8 10

−
1.

0
0.

0
0.

5
1.

0

Lag k

ρρ k
θθ == −3

Matthieu Stigler () Stationary models November 14, 2008 35 / 65



MA(q)

The MA(q) is given by:

Yt = c + εt + θ1εt−1 + θ2εt−2 + . . .+ θ1εt−q

E(Yt) = c

Var(Yt) = (1 + θ2
1 + θ2

2 + . . .+ θ2
q)σ2

Cov(Xt ,Xt−j) ={
σ2(θj + θj+1θ1 + θj+2θ2 + . . .+ θqθq−1) if j = 1

0 if j > 1

Corr(Xt ,Xt−j) =

{
θ

(1+θ2)
if j = 1

0 if j > 1

Proposition

A MA(q) is stationary for every sequence {θ1, θ2, . . . , θq}
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The MA(∞)

Take now the MA(∞):

Yt = εt + θ1εt−1 + θ2εt−2 + . . .+ θ∞ε∞ =
∞∑
j=0

θjεt−j

Definition (Absolute summability)

A sequence is absolute summable if
∑∞

i=0 |αi | < 0

Proposition

The MA(∞) is stationary if the coefficients are absolute summable.
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Back to AR(p)

Recall:

Proposition

If the characteristic polynomial of a AR(p) has roots =1, it is not
stationary.

See that:
(1− φ1yt−1 − φ2yt−2 − . . .− φpyt−p)yt =
(1− α1L)(1− α2L) . . . (1− αpL)yt = εt
It has a MA(∞) representation if: α1 6= 1:
yt = 1

(1−α1L)(1−α2L)...(1−αpL)εt
Furthermore, if the αi (the eigenvalues of the augmented AR(1)) are
smaller than 1, we can write it:

yt =
∞∑
i=0

βiεt

Matthieu Stigler () Stationary models November 14, 2008 39 / 65



Estimation of a MA(1)

We do not observe neither εt nor εt−1

But if we know ε0, we know ε1 = Yt − θε0
So obtain them recursively and minimize the conditional SSR:
S(θ) =

∑T
t=1(yt − εt−1)2

This recquires numerical optimization and works only if |θ| < 1.
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ARMA models

The ARMA model is a composite of AR and MA:

Definition (ARMA(p,q))

Xt = c+φ1Xt−1+φ2Xt−2+. . .+φpXt−p+εt−1+θ1εt−1+θ2εt−2+. . .+θεt−q

It can be rewritten properly as:

Φ(L)Yt = c + Θ(L)εt

Theorem

The ARMA(p,q) model is stationary provided the roots of the Φ(L)
polynomial lie outside the unit circle.

So only the AR part is involved!
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Autocorrelation function of a ARMA(p,q)

Proposition

After q lags, the autocorrelation function follows the pattern of the AR
component.

Remember: this is then given by the Yule-Walker equations.
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ARIMA(p,d,q)

Now we add a parameter d representing the order of integration (so the I
in ARIMA)

Definition (ARIMA(p,d,q))

ARIMA(p,d,q): Φ(L)∆dYt = Θ(L)εt

Example (Special cases)

White noise: ARIMA(0,0,0) Xt = εt

Random walk : ARIMA(0,1,0): ∆Xt = εt ⇒ Xt = Xt−1 + εt
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Estimation and inference

The MLE estimator has to be found numerically.
Provided the errors are normaly distributed, the estimator has the usual
asymptotical properties:

Consistent

Asymptotically efficients

Normally distributed

If we take into account that the variance had to be estimated, one can
rather use the T distribution in small samples.
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The Box-Jenkins approach

1 Transform data to achieve stationarity

2 Identify the model, i.e. the parameters of ARMA(p,d,q)

3 Estimation

4 Diagnostic analysis: test residuals

Matthieu Stigler () Stationary models November 14, 2008 48 / 65



Step 1

Transformations:

Log

Square root

Differenciation

Box-Cox transformation: Y
(λ)
t

{
Y λ

t −1
λ for λ 6= 0

log(Y − t) for λ = 0

Is log legitimate?

Process is: yteδt Then zt = log(yt) = δt and remove trend

Process is yt = yt−1 + εt Then (by log(1 + x) ∼= x)
∆ log(yt) = yt−yt−1

yt
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Step 2

Identification of p,q (d should now be 0 after convenient transformation)
Principle of parsimony: prefer small models Recall that

incoporating variables increases fit (R2) but reduces the degrees of
freedom and hence precision of estimation and tests.

A AR(1) has a MA(∞) representation

If the MA(q) and AR(p) polynomials have a common root, the
ARMA(p,q) is similar to ARMA(p-1,q-1).

Usual techniques recquire that the MA polynomial has roots outside
the unit circle (i.e. is invertible)
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Step 2: identification

How can we determine the parameters p,q?

Look at ACF and PACF with confidence interval

Use information criteria
I Akaike Criterion (AIC)
I Schwarz criterion (BIC)

Definition (IC)

AIC (p) = n log σ̂2 + 2p
BIC (p) = n log σ̂2 + p log n
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Step 3: estimation

Estimate the model...
R function: arima() argument: order=c(p,d,q)
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Step 4: diagnostic checks

Test if the residuals are white noise:

1 Autocorrelation

2 Heteroscedasticity

3 Normality
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> library(forecast)

This is forecast 1.17

> fit <- auto.arima(CPI2, start.p = 1, start.q = 1)

> fit

Series: CPI2
ARIMA(2,0,1)(2,0,2)[12] with zero mean

Coefficients:
ar1 ar2 ma1 sar1 sar2 sma1 sma2

0.2953 -0.2658 -0.9011 0.6021 0.3516 -0.5400 -0.2850
s.e. 0.0630 0.0578 0.0304 0.1067 0.1051 0.1286 0.1212

sigma^2 estimated as 4.031e-05: log likelihood = 1146.75
AIC = -2277.46 AICc = -2276.99 BIC = -2247.44

> res <- residuals(fit)
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> Box.test(res)

Box-Pierce test

data: res
X-squared = 0.0736, df = 1, p-value = 0.7862
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Outline

1 Last Lecture
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Autocorrelation of AR(1)
Stationarity Conditions
Estimation

3 MA models
ARMA(p,q)
The Box-Jenkins approach

4 Forecasting
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Notation (Forecast)

ŷt+j ≡ Et(yt+j) = E(yt+j |yt , yt−1, . . . , εt , εt−1, . . .) is the conditional
expectation of yt+j given the information available at t.

Definition (J-step-ahead forecast error)

et(j) ≡ yt+j − ŷt+j

Definition (Mean square prediction error)

MSPE ≡ 1
H

∑H
i=1 e2

i
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R implementation

To run this file you will need:

R Package forecast

R Package TSA

Data file AjaySeries2.csv put it in a folder called Datasets in the same
level than your.Rnw file

(Optional) File Sweave.sty which change output style: result is in
blue, R commands are smaller. Also in same folder as .Rnw file.
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