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Asymptotic theorems

We will review the two important asymptotic theorems.

Law of large numbers

Central Limit Theorem
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Law of large numbers

Theorem (Law of large numbers)

If x1, . . . , xn are iid random variables with finite mean µ and finite variance
σ2 and X̄n = (1/n)

∑n
i=1 xi , then

X̄
p−→ µ
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Central Limit Theorem

Theorem (Central Limit Theorem)

If x1, . . . , xn are iid random variables with finite mean µ and finite variance
σ2 and X̄n = (1/n)

∑n
i=1 xi , then

x̄n
d−→ N

(
µ, σ

2

n

)

However this distribution is degenerate: the total mass is around µ.
Usually, we rewrite:

√
n(x̄n − µ)

d−→ N(0, σ2)
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Estimation

Consider the usual regression case:

Y = Xβ + ε

The OLS estimator is given by:

β̂ = (X ′X )−1X ′Y

Matthieu Stigler Matthieu.Stigler at gmail.com () Nonstationarity January 9, 2009 8 / 70



Inference

Under hypotheses:

X and ε are independent

ε ∼ iid(0, σ2In)(⇔ no heteroskedasticity or autocorrelation )

plim X ′X
n = Q

Proposition

It is unbiased

Its variance is given by: σ2
ε(X ′X )−1

It is convergent

Its asymptotic distribution is normal.
√

T (β̂ − β)
d−→ N(0, σ2Q−1)
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Preliminary

To study the properties of the OLS estimator, we will start from:

Proposition

β̂ = β + (X ′X )−1X ′ε

Proof.

β̂ = (X ′X )−1X ′Y

= (X ′X )−1X ′(Xβ + ε)

=

I︷ ︸︸ ︷
(X ′X )−1X ′X β + (X ′X )−1X ′ε

= β + (X ′X )−1X ′ε
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Unbiasedness of the OLS

Proposition

The OLS estimator is unbiased: E(β̂) = β

Proof.

E[β̂] = E
[
β + (X ′X )−1X ′ε

]
= β + (X ′X )−1X ′ E[ε] if X and ε independent

= β if E[ε] = 0
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Variance of the OLS

Proposition

The variance of the OLS estimator is: Var[β̂] = σ2
ε(X ′X )−1

Proof.

Var[β̂] = Var
[
β + (X ′X )−1X ′ε

]
= (X ′X )−1X ′ Var[ε] X (X ′X )−1

= (X ′X )−1X ′ σ2
ε In X (X ′X )−1 if Var[ε] = σ2In

= σ2

I︷ ︸︸ ︷
(X ′X )−1X ′X (X ′X )−1

= σ2
ε(X ′X )−1
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Convergence of the OLS

Proposition

The OLS estimator is convergent: β̂
p−→ β

Proof.

From:

β̂ = β + (X ′X )−1X ′ε

β̂ can be rewritten as:

β̂ = β +
(

(X ′X )
T

)−1
X ′ε
T

We will see that:(
(X ′X )

T

)−1 p−→ Q−1

X ′ε
T

p−→ 0
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First element: we make the assumption that: limn→∞
X ′X

n = Q, hence(
(X ′X )

T

)−1
⇒ Q−1

Second element: (X ′ε
T )

E[X ′ε] = 0 under the assumptions:
I X and ε independent
I E[ε] = 0

Var[X ′ε
T ] = X

T

′
Var[ε] X

T = σ2

T
X ′X
T = σ2

T Q → 0

We have hence: plim X ′ε
T → 0

Finally, we see that:

Proposition

plim β̂ = β + Q−10 = β ⇒ β̂
p−→ β
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Distribution of the OLS

Finite sample: if εi ∼ N () the OLS is normally distributed

Asymptotic: OLS is normally distributed by a TCL

Proposition
√

n(β̂ − β)
L−→ N (0, σ2Q−1)
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Distribution of the OLS: proof

β̂ = β +
(

(X ′X )
n

)−1
X ′ε
n →

√
n(β̂ − β) =

(
(X ′X )−1

n

)√
n X ′ε

n

If:

X and ε are independent

E(Xε) = 0

Define new variable w = xiεi

We have w̄ = X
′
ε

n = 1
n

∑n
i=1 xiεi

Is iid

Has expectation 0

Has variance σ2

n Q

Hence by a TCL (Lindberg-Feller):
√

n(w̄ − E(w̄))
L−→ N (0, σ2Q)

Proposition
√

n(β̂ − β)
L−→ N (Q−10,Q−1σ2QQ−1) = N (0, σ2Q−1)
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Review of the assumptions

We had tho make following assumptions:

X and ε are independent

ε ∼ iid(0, σ2In)(⇔ no heteroskedasticity or autocorrelation )

limn→∞
X ′X

n = Q

Do these assumptions hold for correlated data? (no more independent!)
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Moment matrix

The assumption that plim X ′X
n = Q relies on a law of large numbers.

X ′X =
T∑

t=1

xtxt′ =
T∑

t=1


1

x1t

x2t
...

xkt


(
1 x1t x2t . . . xkt

)
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Theoretical moment matrix

Q ≡ E[X ′X ] =


1 µ1 µ2 . . . µk

µ1 σ2
1 + µ2

1 σ12 + µ1µ2 . . . σ1k + µ1µk

µ2 σ21 + µ2µ1 σ2
2 + µ2

2 . . . σ2k + µ2µk
...

...
...

. . .
...

µ2 σk1 + µkµ1 . . . . . . σ2
k + µ2

k


This matrix entails:

First row or colums: Expectations of the variables

In the diagonal: second moments (equal to the variance if E[xi ] = 0 )

Elsewhere: second “cross-moments” (equal to the covariance if
E[xi ] = E [xj ] = 0 )
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Empirical moment matrix

X ′X =


T

∑
x1i

∑
x2i . . .

∑
xki∑

x2i
∑

x2
2i

∑
x2ix3i . . .

∑
x2ixki∑

x3i
∑

x3ix2i
∑

x2
3i . . .

∑
x3ixki

...
...

...
. . .

...∑
xki

∑
xkix2i . . . . . .

∑
x2
ki



Matthieu Stigler Matthieu.Stigler at gmail.com () Nonstationarity January 9, 2009 20 / 70



Convergence of the empirical moment matrix

Theorem
X ′X
T

p−→ Q

This convergence is proved by the law of large numbers:

(1/n)
∑n

i=1 xi
p−→ E[x ] = µ

(1/n)
∑n

i=1 x2
i

p−→ E[x2] = µ2 + σ2

(1/n)
∑n

i=1 x1ix2i
p−→ E[x1x2] = µ1µ2 + σ12

When we use the fact that (Greene, p. 900, 5 ed):

Proposition

(1/n)
∑n

i=1 g(xi )
p−→ E[g(x)] if a LLN hold for x
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Process with autocorrelation

Consider the usual AR(1) process:

Yt = ϕYt−1 + εt

The OLS estimator is given by: ϕ̂T =
PT

i=2 YtYt−1PT
i=2 Y 2

t−1

It has proprieties:

Biased since the assumption that the regressors and the
disturbances are independent is no more valid.

Consistent by a law of large numbers for correlated data

Normally distributed

Its asymptotic distribution is:

√
T (ϕ̂− ϕ)

d−→ N(0, 1− ϕ2)
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Extensions of law of large numbers and TCL

Proposition (Law of large numbers for correlated process)

If Yt is a stationnary process with MA coefficients
∑∞

j=0 |γj | <∞, then

Ȳt
p−→ µ

Proposition (TCL for martingale difference sequence)

1√
T

∑T
i=1 εtYt−k

L−→ N (0, σ2 E(Y 2
t ))

So from: ϕ̂T = φ+
PT

i=2 Yt−1εtPT
i=2 Y 2

t−1∑T
i=2 Y 2

t−1
p−→ Q−1∑T

i=2 Yt−1εt
p−→ 0

√
T
∑T

i=2 Yt−1εt
L−→ N (0, σ2Q)
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Covariance matrix estimation

Var[β̂] = Var
[
β + (X ′X )−1X ′ε

]
= (X ′X )−1X ′ Var[ε] X (X ′X )−1

= (X ′X )−1X ′Ωε X (X ′X )−1

So we wish to estimate: X ′Ωε X

White estimation (HC): S0 = 1
n

∑
ε̂xix

′
i

Newey West (HAC): S0 + 1
n

∑L
l

∑n
l+1 wletet−l(xtxt−l + xt−lx

′
t)
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Random walk
Recall the distribution of a AR(1) process:

√
T (ϕ̂− ϕ)

d−→ N(0, 1− ϕ2)

What happens if φ = 1? Zero variance? Degenerate distribution!√
T (φ̂− 1)

p−→ 0

Definition (rate of convergence)

The rate of convergence of an estimator corresponds to the normalisation
needed to ensure that it is non-degenerate.

Proposition

The usual rate of convergence of estimator is
√

n (mean, OLS usual
coefficients).

Proposition

The OLS estimator converge at rate T when φ = 1. It is said
super-convergent.
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> distrho1 <- function(n) {

+ u <- rnorm(n)

+ y <- cumsum(c(0, u))

+ ylags <- embed(y, 2)

+ reg <- lm(ylags[, 1] ~ ylags[, 2] - 1)

+ sqrt(n) * (coef(reg))

+ }

> distrho <- function(n, ar) {

+ u <- rnorm(n)

+ y <- arima.sim(model = list(order = c(1, 0, 0), ar = ar),

+ n = n)

+ ylags <- embed(y, 2)

+ reg <- lm(ylags[, 1] ~ ylags[, 2] - 1)

+ sqrt(n) * (coef(reg))

+ }

> rho1 <- replicate(10000, distrho1(25))

> rho <- replicate(10000, distrho(25, 0.8))
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> plot(density(rho1), xlim = range(c(rho1, rho)))

> abline(v = 10)

> lines(density(rho), col = 2)

> abline(v = 8, col = 2)

> legend("topleft", lty = 1, col = 1:2, legend = c("phi=1", "phi=0.8"))
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Some intuition about the rate of convergence
See that each Yt = Y0 + ε1 + ε2 + . . .+ εt ∼ N (0, tσ2)
The mean is:

1

T

T∑
i=1

Yi =

Y1︷︸︸︷
ε1 +

Y2︷ ︸︸ ︷
ε1 + ε2 + . . .+

YT︷ ︸︸ ︷
ε1 + . . .+ εT

= Tε1 + (T − 1)ε2 + . . .+ εT

The variance of the mean is:

Var

(
1

T

T∑
i=1

Yi

)
=

1

T 2

T∑
t=1

t2σ2 =
T (T+1)(2T+1)

6 σ2

T 2
∼=

2Tσ2

6

Remember:∑T
1 t = T (T+1)

2∑T
1 t2 = T (T+1)(2T+1)

6

So we need to normalise by
√

T to obtain a stable form:

1√
T

Ȳ ∼ N (0,
1

3
σ2)
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Distribution of φ̂

We need to study T (φ̂− 1) =
T−1

PT
i=2 YtYt−1

T−2
PT

i=2 Y 2
t−1

So we find something like:

T (φ̂− 1)
L−→

(1/2){[W (1)]2 − σ2
u
σ2 }∫ 1

0 [W (r)]2dr

Definition

W(r) is a Brownian Motion. It is normally distributed, with independent
variations which are also normally distributed
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Differences

So when the true DGP is:

Yt = Yt−1 + εt

And we estimate it by
Yt = φYt−1 + εt

We have the first Dickey-Fuller tests:

T (φ̂− 1)

tT = φ̂−1
σ̂φ̂

These both tests have non-standard distributions, so critical values are
needed.
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Critical values finding

> tstat <- function(n) {

+ u <- rnorm(n)

+ y <- cumsum(c(0, u))

+ ylags <- embed(y, 2)

+ reg <- lm(ylags[, 1] ~ ylags[, 2] - 1)

+ tstat <- (coef(reg) - 1)/coef(summary(reg))[, "Std. Error"]

+ arstat <- n * (coef(reg) - 1)

+ return(c(tstat, arstat))

+ }

> MC <- replicate(10000, tstat(25))
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> vec <- c(0.01, 0.025, 0.05, 0.1, 0.9, 0.95, 0.975, 0.99)

> round(quantile(MC[2, ], vec), 2)

1% 2.5% 5% 10% 90% 95% 97.5% 99%
-12.14 -9.62 -7.58 -5.44 1.00 1.40 1.81 2.30

> round(quantile(MC[1, ], vec), 2)

1% 2.5% 5% 10% 90% 95% 97.5% 99%
-2.70 -2.32 -1.98 -1.63 0.90 1.33 1.70 2.09

For the case n = 25 you find the tables:
0.01 0.025 0.05 0.10 . . . 0.90 0.95 0.975 0.99

T (φ̂− 1) -11.9 -9.3 -7.3 -5.3 . . . 1.01 1.4 1.79 2.28

tT = φ̂−1
σ̂φ̂

-2.66 -2.26 -1.95 -1.6 . . . 0.92 1.33 1.7 2.16
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> plot(density(MC[1, ]), col = 2)

> lines(curve(dt(x, df = 25), n = 100, from = -3, to = 3, add = TRUE))

> legend("topleft", lty = 1, col = c(1, 2), legend = c("Usual t-stat",

+ "DF t-stat"))
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Generalisation to correlated errors
We saw the distribution of the φ̂ test to be:

T (φ̂− 1)
L−→ (1/2){[W (1)]2 − 1}∫ 1

0 [W (r)]2dr

But this is with iid errors, more generally it is:

T (φ̂− 1)
L−→

(1/2){[W (1)]2 − σ2
u
σ2 }∫ 1

0 [W (r)]2dr

Where:

σ2
u = limT→∞ T−1

∑T
1 E(ε2t ) Variance of ε

σ2 = limT→∞ T−1 E(
∑T

1 εt)2

Proposition

If the erros are iid, σ2
u = σ2

How to take into account this serial correlation?

Obtain model with no correlation: augmented Dickey-Fuller (ADF)
Correct the estimator to take into account the correlation: Philips
Perron test (PP)
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ADF test

Data is generated by an AR(p) process:

(1− φ1L− φ2L2 − . . .− φpLp)yt = εt

And so we have:

yt = φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt

It can be rewritten (Beveridge and Nelson):

yt = ρyt−1 + ζ1∆yt−1 + ζ2∆yt−2 + . . .+ ζp−1∆yt−p−1 + εt

with ρ = φ1 + φ2 + . . .+ φp

If there is one unit root: ⇔ z = 1 in 1− φ1z − φ2z2 − . . .− φpzp = 0
So ρ = 1
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ADF test

Furthermore we have the results:

Proposition
T (ρ̂−1)

1−ζ̂1−ζ̂2−...−ζ̂p−1
has the same DF distribution as in the iid case..

Proposition

The t-stat has the same DF distribution as in the iid case.

Proposition

The ζ̂i have the usual Normal distribution, and hence t and F-test can be
conducted in the normal way.
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The PP test

Philips and Perron (1988) correct the AR(1) regression for serial
correlation:

φ̂ stat : T (φ̂− 1)− σ̂2 − σ̂2
u

T−2
∑

y2
t−1

σ̂2
u = T−1

∑
(yt − yt−1)2

σ̂2 = T−1
∑

u2 + 2T−1
∑l

i=1 wiγi

wi is a weight-kernel function (Bartlett kernel as in Newey West )

Proposition

The PP correction φ̂ for non iid errors has the same distribution as the φ̂
with iid errors.
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Summary

We have seen two types of tests:

ADF: add lags in the regression (choice of p?)

PP: correct the test for correlation (choice of kernel? of bandwidth?)

Both tests have two variants: t-test and φ test.

Proposition

The PP and ADF versions of the t-test and φ test have the same
non-standard distribution, as in the iid case.
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Random-walk estimated with drift
So when the true DGP is:

Yt = Yt−1 + εt

We saw the distribution of the estimator of φ and of the t-test from:

Yt = φYt−1 + εt

But what if we estimate it by:

Yt = α + φYt−1 + εt

Complications...

The distribution of φ is different, that of the t-test also, and α has
non-standard distribution.

Definition (Nuisance parameter)

The α parameter is called nuisance parameter: its presence modifies the
form of the distribution of φ
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Case 2

We have now three hypothesis:

H0 : φ = 1
I DF with iid or ADF: t-test/Coefficient test
I PP test: t-test/Coefficient test

H0 : α̂ = 0 (not much used... PP version?)

H0 : α̂ = 0 ∩ φ = 1

So we need four tabulated distributions:

For t-tests

For coefficient tests

For tα

For joint hypothesis
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Case 3

True DGP is:
Yt = α + Yt−1 + εt

Estimated regression:
Yt = α̂ + φ̂Yt−1 + εt

But we have this time:

Proposition[
T 1/2(α̂− α)

T 3/2(φ̂− 1)

]
L−→ N (0, σ2Q−1)
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Case 3: explanation

Rewrite Yt = α + Yt−1 + εt :

yt = y0 + αt + (u1 + u2 + . . .+ ut)

Study the sum:

T∑
i=1

yt−1 =

Op(T )︷ ︸︸ ︷
T∑

i=1

y0 +

Op(T 2)︷ ︸︸ ︷
T∑

i=1

α(t − 1) +

Op(T 3/2)︷ ︸︸ ︷
T∑

i=1

T∑
i=1

ui

The regressor yt−1 is asymptotically dominated by the time
trend α(t − 1). In large samples, it is as if the variable yt−1 were
replaced by the time trend α(t − 1). (Hamilton 1994, p 497)
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Case 4

True DGP is:
Yt = α + Yt−1 + εt

Estimated regression:

Yt = α̂ + β̂t + φ̂Yt−1 + εt

Complications...

The distribution of φ is different, that of the t-test also, α and β have
non-standard distribution.
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Case 4

We have many hypotheses:

H0 : φ̂ = 1
I DF with iid or ADF: t-test/Coefficient test
I PP test: t-test/Coefficient test

H0 : α̂ = 0 (not so used)

H0 : β̂ = 0 (not so used)

H0 : α̂ = 0 ∩ φ = 1 (not so used)

H0 : β̂ = 0 ∩ φ̂ = 1 DF or ADF test

So we need for tabulated distributions:

For t-tests (case 4)

For coefficient tests (case 4)

For joint hypothesis
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Case 5

Case 5 is not in Hamilton 1994 (but see Pfaff 2007)
True DGP is:

Yt = α + βt + Yt−1 + εt

Estimated regression:

Yt = α̂ + β̂t + φ̂Yt−1 + εt

Proposition

The distribution of the parameters is normal

Again, the deterministic trend dominates the stochastic one.
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Interpretation of parameters

Interpretation

The interpretation/effect of the parameters is different under H0 and H1!

Take case 3: True DGP is:

Yt = α + Yt−1 + εt

Estimated regression:
Yt = α̂ + φ̂Yt−1 + εt

α is:

Under H0: a trend parameter (Yt = at + Y0 +
∑t−1

i=0 εt−i )

Under H1 a level parameter
(Yt = a

1−ϕ + b
∑t−1

i=0 ϕ
i (t − i) +

∑t−1
i=0 ϕ

iεt−i )
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Size and power problem

Recall:

Definition

Size of a test The nominal size of a test is the theoretical probability to
reject (take as false) a true event (should not).

This is the α error, fixed at 5%, 10%...
However the empirical size can be higher than observed!
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Size with a pure RW process

> library(urca)

> ur.rw <- function(n = 100) {

+ a <- cumsum(c(0, rnorm(n)))

+ ur.df(a)@teststat

+ }

> rep <- replicate(1000, ur.rw())

> mean(ifelse(rep < -1.6, 1, 0))

[1] 0.109
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Size with a an ARIMA(0,1,1)

> ur.IMA <- function(n, a, test = ur.df) {

+ e <- rnorm(n)

+ pr <- (1 + a) * cumsum(e) - a * e[n]

+ test(pr)@teststat

+ }

> rep2 <- replicate(1000, ur.IMA(100, a = 0.3))

> mean(ifelse(rep2 < -1.6, 1, 0))

[1] 0.107

> rep3 <- replicate(1000, ur.IMA(100, a = -0.9))

> mean(ifelse(rep3 < -1.6, 1, 0))

[1] 0.108

> rep4 <- replicate(1000, ur.IMA(100, a = 1.2, test = ur.pp))

> mean(ifelse(rep4 < -1.6, 1, 0))

[1] 0.817
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Power of the tests

> ur.ar <- function(n, ar) {

+ ar <- arima.sim(model = list(model = c(1, 0, 0), ar = ar),

+ n = n)

+ ur.df(ar)@teststat

+ }

> rep5 <- replicate(1000, ur.ar(100, 0.99))

> mean(ifelse(rep5 < -1.6, 1, 0))

[1] 0.224

> rep6 <- replicate(1000, ur.ar(100, 0.9))

> mean(ifelse(rep6 < -1.6, 1, 0))

[1] 0.923
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Choice of the lag order

ADF test recquires choosing p.
Recall that

Proposition

The ζ̂i have the usual Normal distribution, and hence t and F-test can be
conducted in the normal way.

Sequential t-test procedure

Information based rule: AIC, BIC

Some rule: k =
[
c( T

100)1/d
]

Observations show:

AIC BIC choose too much
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ERS test

DF-GLS test:

Stock (1994) showed that there is no uniformly more powerful test.

Obtain power envelope by Neyman-Pearson lemma: no test can be
better, for fixed α error, than this envelope.

See that in case without constant or trend, usual tests reach this
bound

In cases with mean and trend, tests are far below

Conclusion: detrend the data (with GLS) and apply then ADF t-test.

P-test:
Other procedure but gives almost same results as DF-GLS.
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ERS power envelope with c = T (φ− 1)
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Outline

1 Standard theory
Asymptotic theorems
The linear regression

2 Correlated data

3 The random walk
Distribution problems
Discussion of others tests

Stationarity tests

4 Implementation in R
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KPSS test

KPSS (1992): H0 is stationarity

Level stationarity I(0)

Trend stationarity not I(0) but not I(1)!

yt = αt + rt + εt

Paramater constancy:
rt = rt−1 + ut

H0 : Var(u) = 0 so r is a constant ⇒ yt is stationnary in level/trend
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KPSS 2

LM test statistic: ∑T
t=1(

∑t
i=1 εi )

2

σ̂2
ε

With iid errors: Take simple estimator of the variance of ε

With non iid errors: σ2
ε is estimated as in PP test:

σ̃2
ε = T−1

∑
u2 + 2T−1

l∑
i=1

wiγi

and the kernel/weight function is the Bartlett window: w(l , s) = 1− s
l+1
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KPSS test 3

Simulation show:

Considerable size distortion when ther errors follow AR(1)

Power is very low when l is big (12)

Increasing l decreases power
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Nelson and Plosser (1982) study
Nelson and Plosser (1982) investigate 14 time series:

Real GNP

Nominal GNP

Real Per Capita GNP

Industrial Production Index

Total Employment

Total Unemployment Rate

GNP Deflator

Consumer Price Index

Nominal Wages

Real Wages

Money Stock (M2)

Velocity of money

Bond Yield (30-year corporate bonds)

Stock Prices
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Nelson and Plosser (1982) study
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Nelson and Plosser (1982) study 3

1860 1900 1940 1980

7
8

9
10

Nominal Wages

1860 1900 1940 1980

3.
0

3.
4

3.
8

4.
2

Real Wages

1860 1900 1940 1980

2
3

4
5

6
7

Money Stock (M2)

1860 1900 1940 1980

0.
5

1.
0

1.
5

Velocity of money

1860 1900 1940 1980

2
4

6
8

10
12

Bond Yield (30−year corporate bonds)

1860 1900 1940 1980

1
2

3
4

5

Stock Prices

Matthieu Stigler Matthieu.Stigler at gmail.com () Nonstationarity January 9, 2009 66 / 70



Results of the test of Trend stationary vs Difference stationary:

NP Results

13 series can be viewed as DS, one (unemployment) as TS.

KPSS results

1 series is level stationary

4 series are I(1): reject stationarity (at every l = 1 . . . 8 and don’t
reject unit root

3 series seem to be I(1) (result depends on l)

6 series: can’t reject either the unit root or the trend stationnary H0,
the conclusion is that the data are not sufficiently informative.

Choose want you want

For 10 series, the result can be interpeted as I(1) or stationary around
trend... up to you!
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Packages

Urca ADF, PP, ERS, KPSS

fUnitRoots ADF with McKinnon (1996) critical values

uroot ADF (with AIC, BIC, t-stat procedure), seasonal unit roots:
HEGY and Hansen & Canova

Missing:Ng & Perron Test, which seems to have good size and high power.
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Running this sweave+beamer file

To run this Rnw file you will need:

Package urca

ERS.png and table.pdf in file Datasets

lect4UnitRoot-002.eps/pdf and lect4UnitRoot-002.eps/pdf in
Datasets. Those can be actually run from the code but have been
saved to avoid too many computations every time.

(Optional) File Sweave.sty which change output style: result is in
blue, R commands are smaller. Also in same folder as .Rnw file.
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