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VMA representation

VAR(1) to VMA(∞):

yt = A1yt−1 + εt (1)

= A0 +
∞∑
i=0

Ai
1εt−i (2)

VAR(p) in VAR(1) to VMA(∞):

Yt = A1Yt−1 + Et (3)

=
∞∑
i=0

Ai
1Et−i (4)
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Interpretation of the VMA(∞) coefficient matrices

From the VMA(∞) of a VAR(1):

yt = A0 +
∞∑
i=0

Ai
1εt−i

Elements of Ai represents effects of unit shocks in the variables after i
periods.
Interpretation: the εt can be seen as 1 step-ahead forecast error so are
called forecasr error impulse responses.
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> library(vars)

> data(Canada)

> var<- VAR(Canada[,c("e","rw")], p = 2, type = "const")

> imp<-irf(var, boot=FALSE, ortho=FALSE,n.ahead=200)

> plot(imp)
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Scaling of the impulse:

rescale the axes with 1 =
√
σ2

y

Relation with Granger causality:
IRF of y1 to yi i 6= 1 is zero if y1 does not Granger cause the others
variables
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Cumulated IRF

From MA representation:

yt = A0 +
∞∑
i=0

Φiεt−i

We now want to know the cumulated impact:
Ψn =

∑n
i=0 Φi accumulated responses over n periods
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problem with the interpretation

Previous assumption: schocks are independent (we force other shocks to
be zero).

But shocks may be correlated! See the var-cov matrix of the residuals.

So impulse is composite effect and interpretation is not direct.

Solution: Create independant (orthogonal) residuals.
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Triangular and Choleski decomposition of matrices

Theorem (Triangular decomposition)

Any positive definite symmetric matrix A has a unique representation of
the form:

A = BDB
′

where:

B is lower triangle with 1 along the principal diagonal

D is a diagonal matrix

Theorem (Choleski decomposition)

Any positive definite symmetric matrix A has a unique representation:

A = PP
′

P is lower triangle with squares roots of D along the diagonal

Choleski decomposition just let P = BD1/2
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Choleski decomposition with R

> m <- matrix(c(5,1,1,3),2,2);m

[,1] [,2]
[1,] 5 1
[2,] 1 3

> tP <- chol(m);tP

[,1] [,2]
[1,] 2.236068 0.4472136
[2,] 0.000000 1.6733201

> #R gives P'P (and we saw PP')

> t(tP) %*% tP

[,1] [,2]
[1,] 5 1
[2,] 1 3
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Triangular decomposition with R
It is not available directly so we find it from Choleski by setting:

C has the diag of P
B = PC−1

D = CC
′

> C<-matrix(0,2,2)

> diag(C)<-diag(tP)

> A<-t(tP)%*%solve(C);A #lower triangle

[,1] [,2]
[1,] 1.0 0
[2,] 0.2 1

> D<-C%*%t(C);D #diagonal

[,1] [,2]
[1,] 5 0.0
[2,] 0 2.8

> A%*%D%*%t(A) #original matrix

[,1] [,2]
[1,] 5 1
[2,] 1 3
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Orthogonal IRF
From the VMA:

yt = A0 +
∞∑
i=0

Φεt−i

Decompose Σε = PP
′

where P is lower triangular matrix.
Insert PP−1 into the VMA:

yt = A0 +
∞∑
i=0

ΦiPP−1εt−i

And let:

Θi ≡ ΦiP

wt ≡ P−1εt

So we have:

yt = A0 +
∞∑
i=0

Θwt−i
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Orthogonal IRF 2
We rewrote

yt = A0 +
∞∑
i=0

Θwt−i

Proposition

The residuals wt are independant to each other: Var(wt) = I

Proof.

Var(wt) ≡ Σw = Var(P−1εt) = P−1ΣεP−1′
= P−1PP

′
P−1′

= I

Hence:

Innovations are independant

Variance is one

So unit innovation is just an innovation of size one standard deviation.

The (j,k) element of Θj is assumed to represent the effect on variable j of
a unit innovation of variable k thats has occured i period ago.
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Orthogonal IRF 3

This orthogonalization is called sometimes Wold
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SVAR model

We now study a full system:

yt = δ1 + b12zt + γ11yt−1 + γ12zt−1 + ε1t

zt = δ2 + b21yt + γ21yt−1 + γ22zt−1 + ε2t

In matrix notation:[
1 −b12

−b21 1

] [
yt

zt

]
=

[
δ1
δ2

]
+

[
γ11 γ12

γ21 γ22

] [
yt−1

zt−1

]
+

[
ε1t
ε2t

]
Compactly:

Bxt = ∆ + Γxt−1 + εt
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From SVAR to VAR
This SVAR can be rewritten in a VAR by premultiplicating by B−1:

xt = A0 + A1xt−1 + ut

ut = B−1εt

A0 = B−1∆

A1 = B−1Γ

Under the assumption that the εt from SVAR are white noise, the ut from
VAR have:

Zero mean

fixed variance

individually not autocorelated

Correlated to each other if b12, b21 6= 0

Examine: ut = B−1εt =

{
u1t = (ε1t − b12ε2t)/(1− b12b21)

u2t = (ε2t − b21ε1t)/(1− b12b21)
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Problems with the estimation

SVAR: endogeneity problem

VAR to SVAR: unidentification of the structural parameters. Need
restrictions

Example

VAR: 9=2+4+3 parameters (intercept+slope+var/cov)

SVAR: 10=2+2+4+2 parameters (contemp+intercept+slope+var)

We have to make 1 restriction on the structural parameters

Proposition

We need k2−k
2 restrictions to identify the SVAR from the VAR.
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Types of restrictions

Choleski

Triangular

Economic a priori

Blanchard-Quah
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Choleski restrictions

Remember, by setting:

wt ≡ P−1εt where Σε = PP
′

we could go from a VMA with correlated residuals to a VMA with Σw = I :

yt = A0 +
∞∑
i=0

Θwt−i

This is implicitly a SVAR where B = P:

SVAR: Pxt = ∆ + Γxt−1 + εt
VAR: xt = P−1∆ + P−1Γxt−1 + P−1εt = A∗ + A∗xt−1 + ut

The residuals are Σu = Var(P−1ε) = P−1ΣεP−1′
= I
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Triangular restrictions

We can also use the triangular decomposition:

Σε = ADA
′

and set B = A so:

SVAR: Axt = ∆ + Γxt−1 + εt
VAR: xt = A−1∆ + A−1Γxt−1 + A−1εt = A∗ + A∗xt−1 + ut

The residuals are Σu = Var(Aε) = AΣεA
′

= D
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IRF

Both triangular or Choleski imply that B is lower triangular:

B =

(
1 0

b21 1

)
That means that in the SVAR we have set b12 = 0:

yt = δ1 +

=0︷︸︸︷
b12 zt + γ11yt−1 + γ12zt−1 + ε1t

zt = δ2 + b21yt + γ21yt−1 + γ22zt−1 + ε2t

This is a kind of exogeneity: we assume that there is no
contemporaneous impact (or Wold causality)of zt to yt

This operation is called ordering of the variables and is made with
economic arguments.
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IRF

With the Choleski decomposition we can now compute the Impulse
Response Function and interpret it as the impact of shocks of xi to xj .

Problem

The results differ when the ordering is changed!
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Choleski

Remember the relation between the SVAR residuals ut and the VAR
residuals εt :

εt = But

u1t = (ε1t −
=0︷︸︸︷
b12 ε2t)/(1−

=0︷︸︸︷
b12 b21) = ε1t

u2t = (ε2t − b21ε1t)(1−
=0︷︸︸︷
b12 b21) = ε2t − b21ε1t
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Other restrictions:

Coefficient: b12 = 0

Variance: Var(ε1t) = 1

Symmetry: b12 = b21
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Cho decomposition

How do we obtain the B?

V̂ar(ut) = Ω̂ from reduced VAR (estimated)

Define Var(uεt) ≡ Σ in the SVAR (not observed)

Theoretical relationship: ut = B−1εt

So we obtain: Ω̂ = B−1ΣB−1′

If we make further the assumption that Σ = I we have:
Ω̂ = B−1B−1′

Under the assumption that P = B−1 is lower triangular matrix, we have
the unique decomposition (Choleski): Ω = PP

′

Matthieu Stigler Matthieu.Stigler@gmail.com () Structural VAR models December 9, 2008 27 / 33



SVAR

B0yt = c0 + B1yt−1 + B2yt−2 + · · ·+ Bpyt−p + εt[
1 B0;1,2

B0;2,1 1

] [
y1,t

y2,t

]
=

[
c0;1

c0;2

]
+

[
B1;1,1 B1;1,2

B1;2,1 B1;2,2

] [
y1,t−1

y2,t−1

]
+

[
ε1,t

ε2,t

]
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Problem: results depend on the ordering of the variables! See sensitivity
analysis during conference: tested for many different variables and obtain
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same result. Here same variables but different output.
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Forecast of a VAR(1)

Take the VAR(1):
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