Lecture 3: Statistical estimation and inference

Matthieu Stigler Matthieu.Stigler@gmail.com

December 15, 2008

Matthieu Stigler Matthieu.Stigler@gmail[Lecture 3: Statistical estimation and inference](#page-0-0) **(2008 December 15, 2008 1 / 1**

convergence of a random variable

Definition (Convergence)

 X_n converges to X if $\lim_{n\to\infty} p(|\hat{\theta}_n - \theta| > \epsilon) = 0 \qquad \forall \, \epsilon > 0.$

X is a variable or a constant!

Theorem (Weak law of large numbers)

 $\lim_{n\to\infty}$ Pr($|\bar{X}_n - \mu| < \varepsilon$) = 1

convergence in distribution

Definition

Xⁿ converge in distribution/law to *X*: *lim*_{*n*→∞} Pr(*X_n* < *a*) = Pr(*X* < *a*) ∀*a*

Notation

$$
X_n \xrightarrow{C} X
$$

 Ω

 \leftarrow \mathbb{R} \rightarrow **A** The

χ^{2} distribution:

Definition (Chi square law) If X_i *iid* $\sim \mathcal{N}(0,1)$ and $Q = \sum_{i=1}^k X_i^2$ then $Q \sim \chi_k^2$

Proposition (Convergence of chi 2) $\lim_{k\to\infty}\chi^2_k\sim\mathcal{N}(k,2k)$

E

 Ω

4 何 ト 4 重 ト 4 重 ト ー

Student distribution:

Definition (Student distribution:) If $X \sim \mathcal{N}(0, 1)$ and $Y \sim \chi^2(k)$ then $Z = \frac{\chi^2}{\sqrt{N}}$ $\frac{\chi}{\overline{Y/\nu}} \sim t(k).$ (provided X and Y are independant):

Proposition (Convergence of student dis) *lim*_{*k*→∞}*t*(*k*) ∼ $\mathcal{N}(0, 1)$

Fisher distribution:

Definition (Fisher distribution:)

If $X \sim \chi^2_k$ and $Y \sim \chi^2(I)$ then $\frac{X/k}{Y/I} \sim F_{k,I}$. (provided X and Y are independant):

central limit theorem

Theorem (central limit theorem) $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \stackrel{d}{\to} \mathcal{N}(\mathsf{0},\mathsf{1})$

Outline

Matthieu Stigler Matthieu.Stigler@gmail[Lecture 3: Statistical estimation and inference](#page-0-0) **December 15, 2008** 8 / 1

重

 299

イロトス 伊 トス ミトス ミト

Often, we are interested in estimating some values:

- Some usual numbers
	- \blacktriangleright Number of inhabitants
	- \triangleright Proportion of right-hand writers
- Parameters of a distribution
	- \blacktriangleright Expectation
	- \blacktriangleright Variance
	- \blacktriangleright Min or max
	- \blacktriangleright Median or any quantile
- **Parameters of a model**

But with estimation we will always obtain a value!

- Does this value have a sens?
- How sure am I about this value?
- How is this value affected if I add one observation?

Statistical philosophy:

consider the experiment / sample as a result of random variables.

So our estimation is also random!!

So we now define an estimator:

Notation *We write the true value* θ

Definition

An estimator is a function of the observed values. $\hat{\theta} = f(x_1, x_2, \ldots, x_n)$

Definition

The value obtained from the estimator is called an estimate and is written: $\hat{\theta}$

Estimator

As the observations are considered as random variables, the estimator is also a random variable, it has furthermore:

- **A** distribution
- An expectation
- **•** A variance

Outline

Matthieu Stigler Matthieu.Stigler@gmail[Lecture 3: Statistical estimation and inference](#page-0-0) **December 15, 2008** 14/1

重

 299

イロト イ団 トイモト イモト

Matthieu Stigler Matthieu.Stigler@gmail[Lecture 3: Statistical estimation and inference](#page-0-0) **December 15, 2008** 15/1

 299

メロトメ 御 トメ 君 トメ 君 トー 君

If we know or assume the distribution of the data, it is possible to derive the distribution of our estimator.

Example

Take the estimator of the sum: $\theta = \sum x_i$ and assume X follows a Poisson distribution: $x_i \sim \mathcal{P}(\lambda)$. As $X + Y$ has still a Poisson distribution, $\hat{\theta} \sim \mathcal{P}(n\lambda)$

Without knowledge or assumption about the observations, how to know the distribution of the estimate, as we have only one realization of it?

- Asymptotic theory: when $n \to \infty$
- **Bootstrap** \bullet

A (prematurated) intro to bootstrap

Bootstrap principle: As you consider the observations as random, try to have another set of these observations.

- Natural sciences: make same experiment again
- **•** Economics: resample

Resampling:

- **1** Compute $\hat{\theta}$ on $X = \{X_i, X_2, \ldots, X_n\}$
- ² Resample with replacement: obtain new $X^* = \{x_1^*, x_2^*, \ldots, x_n^*\}$
- ³ Compute new $\hat{\theta}^*$ on X^*
- $\widehat{\theta}$ Repeat 2 and 3 10000 times and obtain 10000 $\hat{\theta}^{i*}$
- ⁵ Operation 4 gives you the *bootstrap distribution*

Bias of an estimator

We will see first a propriety related to the expectation of the estimator:

Definition $\textit{Bias}(\hat{\theta}) \equiv E[\hat{\theta}] - \theta$

Definition

 θ is an unbiased estimator: $\Leftrightarrow \mathit{Bias}(\hat{\theta}) = 0 \Leftrightarrow E[\hat{\theta}] - \theta$

After having spoken about the expectation of the estimator, we speak about its variance:

Definition

Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two **unbiased** estimators. $\hat{\theta}_1$ is relatively more efficient than $\hat{\theta}_2$ if $\mathsf{Var}(\hat{\theta}_1) < \mathsf{Var}(\hat{\theta}_1)$

Efficiency 2: Cramer-Rao Bound

The variance of any estimator has a lower bound: it can't be lower than a quantity obtained from the Cramer-Rao Bound.

Proposition Var $\left(\widehat{\theta}\right)\geq\frac{1}{\mathcal{I}(t)}$ $\mathcal{I}(\theta)$

Definition

An **unbiased** estimator $\hat{\theta}$ is efficient if it reaches the Cramer-Rao boud, ie: Var $(\widehat{\theta}) = \frac{1}{\mathcal{I}(\theta)}$

That is, no **unbiased** estimator can have a smaller variance!

 Ω

 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

Remember:

That is, no unbiased estimator can have a smaller variance!

But it is possible that a biased estimator has a lower variance!

So how to compare?

Mean square error MSE

Define the Mean square error (MSE):

Definition $\mathsf{MSE}(\hat{\theta}|\theta) \equiv \mathbb{E}\left((\hat{\theta} - \theta)^2\right)$

 $\mathsf{MSE}(\hat{\theta}|\theta) = \mathsf{Bias}(\hat{\theta})^2 + \mathsf{Var}(\hat{\theta})$

Proposition

It can be better understood/interpreted from:

Hence it allows to compare biased estimators.

What happens if we add some new observations, potentially false/extrem (outliers)?

Definition

An estimator is robust if it is not attracted by extreme values.

compare: mean and median

Outline

Matthieu Stigler Matthieu.Stigler@gmail[Lecture 3: Statistical estimation and inference](#page-0-0) **December 15, 2008** 24 / 1

重

 299

イロト イ団 トイモト イモト

All the proprieties were discussed based on the finite sample/exact distribution. What happens if my sample is growing? Do I get to the true

value if I have more and more informations?

Study the asymptotic proprieties: $n \to \infty$

Consistency 1

Remember:

Definition

$$
X_n \text{ converges to } X \text{ if } \lim_{n\to\infty} p(|\hat{\theta}_n - \theta| > \epsilon) = 0 \qquad \forall \epsilon > 0.
$$

X can be a random variable or a constant. We are interested here in the convergence to the true value (constant).

Definition

 $\hat{\theta}_n$ is convergent/consistent if $\lim_{n\to\infty}p(|\hat{\theta}_n-\theta|>\epsilon)=0 \qquad \forall \,\epsilon>0.$

 Ω

あきする 新

Consistency 2

Notation

$$
\hat{\theta} \xrightarrow{\rho} \theta \text{ or } \text{plim } \hat{\theta} = \theta
$$

Relation between unbiasedness and consistency of an estimator?

No one!

Estimator can be:

- Consistent and unbiased (best!)
- Consistent but biased (often)
- Unbiased but not consistent

Consistency 3

Nevertheless:

Proposition

$$
\left\{ \mathsf{E}[\hat{\theta}] = \theta \quad \text{et} \quad \lim_{n \to \infty} \text{Var}[\hat{\theta}] = 0 \right\} \Rightarrow \hat{\theta} \xrightarrow{\rho} \theta
$$

Recall that:
$$
MSE(\hat{\theta}|\theta) = Bias(\hat{\theta})^2 + Var(\hat{\theta})
$$

Proposition

$$
\lim_{n\to\infty}MSE(\hat{\theta}|\theta)=0\Rightarrow \hat{\theta}\stackrel{p}{\to}\theta
$$

E

 Ω

 (0.12333338)

Often, the finite sample distribution of the estimator is unknown, unless we make assumptions about the distribution of the observations.

But we can know sometimes its asymptotic distribution!

Definition $F_n \xrightarrow{d} F$

Example

By the central limit theorem:
$$
\bar{X} \xrightarrow{d} \mathcal{N}(0, \frac{\sigma^2}{n})
$$

This result is independant on the distribution of the observations (no assumption needed).

 Ω

 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

Outline

Matthieu Stigler Matthieu.Stigler@gmail[Lecture 3: Statistical estimation and inference](#page-0-0) **December 15, 2008** 30/1

重

 299

イロト イ団 トイモト イモト

We will see how to apply this:

- **•** Variance
- **•** Expectation

E

 299

COLE \leftarrow \leftarrow \leftarrow \mathcal{A} 医下半面 Compare the properties of two estimators of var 1/n and 1/n-1

- -bias: *S* 2 *ⁿ*−¹ unbiased
- -var: *S* 2 *ⁿ* has a smaller variance
- -MSE: *S* 2 *ⁿ* has a smaller MSE
- - Consistency: both are convergent!
- $\overline{\text{L}}$ -Distribution: $(n-1)\frac{s^2}{\sigma^2} \sim \chi^2_{n-1}$

Convergence of estimator for variance

Theorem

s 2 *n* $\stackrel{p}{\rightarrow} \sigma^2$

Proof.

Rewrite:
$$
s_n^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2 = (\frac{1}{n} \sum_{i=1}^n y_i^2) - \overline{y}^2
$$

Then study:

•
$$
\overline{y}^2 \xrightarrow{\rho} \mu^2
$$
 by Slutzky theorem
\n• $\frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2 \xrightarrow{\rho} E[x^2] = \mu^2 + \sigma^2$
\nSo $s_n^2 \xrightarrow{\rho} \mu^2 + \sigma^2 - \mu^2 = \sigma^2$

E

 Ω

イロト イ押 トイラト イラト

Study the properties of the mean as estimator of the expected value:

- -unbiased
- -not robust
- -convergent by law of large numbers \bullet
- -asymptotically normal by central limit theorem

Outline

Matthieu Stigler Matthieu.Stigler@gmail[Lecture 3: Statistical estimation and inference](#page-0-0) **December 15, 2008** 35 / 1

重

 299

イロト イ団 トイモト イモト

$$
\left[\overline{x}-2\tfrac{\sigma(X)}{\sqrt{n}};\overline{x}+2\tfrac{\sigma(X)}{\sqrt{n}}\right]
$$

Matthieu Stigler Matthieu.Stigler@gmail[Lecture 3: Statistical estimation and inference](#page-0-0) **December 15, 2008** 36 / 1

 299

メロトメ 御 トメ 君 トメ 君 トー 君

Exercises

Show that $E(s_n^2) = \frac{n-1}{n}V(X)$ Idea: use that $\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^2$ can be rewritten as: (try also to prove it!) $=$ $\left(\frac{1}{n}\right)$ $\frac{1}{n}\sum_{i=1}^n x_i^2 - \bar{x}^2$

Exercise 2: Show that $E(s_n^2) = V(X)$ if μ is known! Idea: same as before, but starting from: $\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\mu)^{2}$ and μ is here a constant!

You will always need for that: recall $\text{Var}(X) = E[X^2] - E[X]^2)$

Exercises 2

Defining:

$$
Z=\tfrac{\bar X-\mu}{\sigma/\sqrt{n}}
$$

(recall that Z then follows asymptotically a standard normal!) We want to obtain a confidence interval of the form:

$$
P(-b\leq \mu\leq b)=1-\alpha=0.95.
$$

And the result is:

$$
P\left(\bar{X} - a\frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + a\frac{\sigma}{\sqrt{n}}\right)
$$

where $a = \Phi^{-1}(0.975) = 1.96$,

Why? Show it!