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convergence of a random variable

Definition (Convergence)
X, converges to X if lim,_... p(|d, — 0| > ¢) =0 Ve>D0. J

X is a variable or a constant!
Theorem (Weak law of large numbers)
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convergence in distribution

Definition
X, converge in distribution/law to X:
limp_~ Pr(X, < a) = Pr(X < a) Va

Notation
X, 5 X
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x2 distribution:
Definition (Chi square law)
If Xjiid ~ N(0,1) andQ = 31, X? thenQ ~ 2

Proposition (Convergence of chi 2)
limi_oo X3 ~ N (K, 2k)
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Student distribution:

Definition (Student distribution:)

2 _ X :
If X ~N(0,1)and Y ~ x*(k) then Z = T t(k). (provided

X and Y are independant):

Proposition (Convergence of student dis)
limy oo t(K) ~ N(0,1)
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Fisher distribution:
Definition (Fisher distribution')

If X ~ x2 and Y ~ x2(/) then ~ Fi . (provided X and Y are
independant):
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central limit theorem

Theorem (central limit theorem)
ﬂ % N(0,1)
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Often, we are interested in estimating some values:
@ Some usual numbers

» Number of inhabitants
» Proportion of right-hand writers

@ Parameters of a distribution

Expectation

Variance

Min or max

Median or any quantile

v

v

v

v

@ Parameters of a model
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Estimation and inference

But with estimation we will always obtain a value!
@ Does this value have a sens?
@ How sure am | about this value?
@ How is this value affected if | add one observation?
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Estimation and inference

Statistical philosophy:
consider the experiment / sample as a result of random
variables.

So our estimation is also random!!
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Estimation and inference

So we now define an estimator:

Notation
We write the true value 0

Definition
An estimator is a function of the observed values.
0 =1f(x1,%2,...,Xn)

Definition
The value gbtained from the estimator is called an estimate and
is written: 0
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Estimator

As the observations are considered as random variables, the
estimator is also a random variable, it has furthermore:

@ A distribution

@ An expectation
@ A variance
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Estimation and inference

If we know or assume the distribution of the data, it is possible to
derive the distribution of our estimator.

Example

Take the estimator of the sum: § = > x; and assume X follows a
Poisson distribution: x; ~ P(A). As X + Y has still a Poisson
distribution, 6 ~ P(n\)
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Without knowledge or assumption about the observations, how
to know the distribution of the estimate, as we have only one
realization of it?

@ Asymptotic theory: when n — oo
@ Bootstrap
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A (prematurated) intro to bootstrap

Bootstrap principle: As you consider the observations as
random, try to have another set of these observations.

@ Natural sciences: make same experiment again
@ Economics: resample
Resampling:
@ Compute don X = {x;, Xz, ..., Xy}
© Resample with replacement: obtain new
X ={x"x5,...., x5}
© Compute new 4% on X*
@ Repeat 2 and 3 10000 times and obtain 10000 §*
@ Operation 4 gives you the bootstrap distribution
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Bias of an estimator

We will see first a propriety related to the expectation of the
estimator:

Definition
Bias(A) = E[] — 6

Definition

0 is an unbiased estimator: < Bias(f) = 0 < E[i] — 0
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Efficiency 1

After having spoken about the expectation of the estimator, we
speak about its variance:

Definition

Let 6, and 6, be two unbiased estimators. 4, is relatively more
efficient than 6, if Var(6,) < Var(6,)
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Efficiency 2: Cramer-Rao Bound

The variance of any estimator has a lower bound: it can’t be
lower than a quantity obtained from the Cramer-Rao Bound.

Proposition

Var (5) > ﬁ

Definition
An unbiased estimator 4 is efficient if it reaches the

Cramer-Rao boud, ie: Var(d) = ]

That is, no unbiased estimator can have a smaller variance!
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Remember:
That is, no unbiased estimator can have a smaller
variance!

But it is possible that a biased estimator has a lower variance!

So how to compare?
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Mean square error MSE

Define the Mean square error (MSE):
Definition
MSE(d]0) = E ((é . 6)2) J

It can be better understood/interpreted from:
Proposition
MSE(A|0) = Bias(f)? + Var(d) J

Hence it allows to compare biased estimators.
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Robustness

What happens if we add some new observations, potentially
false/extrem (outliers)?

Definition
An estimator is robust if it is not attracted by extreme values. J

compare: mean and median

Matthieu Stigler Matth ler@gmaillecture 3: Statistical estimation and inference December 15, 2008 23/1



Outline

Matthieu Stigler yma illecture 3: Statistical estimation and inference



All the proprieties were discussed based on the finite
sample/exact distribution.

What happens if my sample is growing? Do | get to the true
value if | have more and more informations?

Study the asymptotic proprieties: n — oo
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Consistency 1

Remember:
Definition
X, converges to X if lim,_.. p(|d, —0] >€) =0  Ve>O0.

X can be a random variable or a constant.
We are interested here in the convergence to the true value
(constant).

Definition

0, is convergent/consistent if
limp_oo p(|0n — 0] > €) =0 Ve > 0.
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Consistency 2

Notation
02 6 orplimd =6 }

Relation between unbiasedness and consistency of an
estimator?

No one!
Estimator can be:

@ Consistent and unbiased (best!)
@ Consistent but biased (often)
@ Unbiased but not consistent
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Consistency 3

Nevertheless:
Proposition
{E[e“] =0 et lim,_ Var[d] = o} =029 J

Recall that: MSE(f|#) = Bias(f)? + Var(d)

Proposition
lim,_..c MSE(8|0) = 0= 2 ¢ J
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Often, the finite sample distribution of the estimator is unknown,
unless we make assumptions about the distribution of the
observations.

But we can know sometimes its asymptotic distribution!

Definition
Fo s F

Example

By the central limit theorem: X < A/(0, Z)

vy

This result is independant on the distribution of the observations
(no assumption needed).
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We will see how to apply this:
@ Variance
@ Expectation
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Compare the properties of two estimators of var 1/n and 1/n-1
@ -bias: S2 , unbiased
@ -var: S2 has a smaller variance
@ -MSE: $2 has a smaller MSE
@ -Consistency: both are convergent!
e -Distribution: (n —1)% ~ 2 |
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Convergence of estimator for variance

Theorem

p
S,27—>(72

Proof.

Rewrite: 2 =157 (yi—y)* = (A0, y?) - ¥
Then study:

e ¥ 2 12 by Slutzky theorem
o I (vi— V)2 B ENXY = p? + 0%
Sos2 2 2402 — 12 =02
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Study the properties of the mean as estimator of the expected
value:

@ -unbiased

@ -not robust

@ -convergent by law of large numbers

@ -asymptotically normal by central limit theorem
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o(X). o(X)
[ — 279, x+2f]
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Exercises

Show that E(s2) = 21 V(X)
ldea: use that 1 37 | (x — X)? can be rewritten as: (try also to
prove it!)

= (52 xf) =X

Exercise 2: Show that E(s2) = V/(X) if u is known!
Idea: same as before, but starting from: 1 5~ . (x; — 1)? and g
is here a constant!

You will always need for that: recall Var(X) = E[X?] — E[X]?)
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Exercises 2

Defining:

(recall that Z then follows asymptotically a standard normal!)
We want to obtain a confidence interval of the form:
P(-b<pu<b)=1-a=0.95

And the result is:

P()_(—aﬁéué)_ﬂra%)

where a = »-1(0.975) = 1.96,,

Why? Show it!
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