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convergence of a random variable

Definition (Convergence)
Xn converges to X if limn→∞ p(|θ̂n − θ| > ε) = 0 ∀ ε > 0.

X is a variable or a constant!

Theorem (Weak law of large numbers)
limn→∞ Pr(|X̄n − µ| < ε) = 1
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convergence in distribution

Definition
Xn converge in distribution/law to X :
limn→∞ Pr(Xn < a) = Pr(X < a) ∀a

Notation
Xn

L−→ X
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χ2 distribution:

Definition (Chi square law)
If Xi iid ∼ N (0,1) andQ =

∑k
i=1 X 2

i thenQ ∼ χ2
k

Proposition (Convergence of chi 2)
limk→∞χ

2
k ∼ N (k ,2k)
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Student distribution:

Definition (Student distribution:)
If X ∼ N (0,1) and Y ∼ χ2(k) then Z = X√

Y/ν
∼ t(k). (provided

X and Y are independant):

Proposition (Convergence of student dis)
limk→∞t(k) ∼ N (0,1)
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Fisher distribution:

Definition (Fisher distribution:)
If X ∼ χ2

k and Y ∼ χ2(l) then X/k
Y/l ∼ Fk ,l . (provided X and Y are

independant):
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central limit theorem

Theorem (central limit theorem)
X̄−µ
σ/
√

n
d−→ N (0,1)
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Outline
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Often, we are interested in estimating some values:
Some usual numbers

I Number of inhabitants
I Proportion of right-hand writers

Parameters of a distribution
I Expectation
I Variance
I Min or max
I Median or any quantile

Parameters of a model
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Estimation and inference

But with estimation we will always obtain a value!
Does this value have a sens?
How sure am I about this value?
How is this value affected if I add one observation?
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Estimation and inference

Statistical philosophy:
consider the experiment / sample as a result of random
variables.

So our estimation is also random!!
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Estimation and inference

So we now define an estimator:

Notation
We write the true value θ

Definition
An estimator is a function of the observed values.
θ̂ = f (x1, x2, . . . , xn)

Definition
The value obtained from the estimator is called an estimate and
is written: θ̂
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Estimator

As the observations are considered as random variables, the
estimator is also a random variable, it has furthermore:

A distribution
An expectation
A variance

Matthieu Stigler Matthieu.Stigler@gmail.com ()Lecture 3: Statistical estimation and inference December 15, 2008 13 / 1



Outline

Matthieu Stigler Matthieu.Stigler@gmail.com ()Lecture 3: Statistical estimation and inference December 15, 2008 14 / 1



Matthieu Stigler Matthieu.Stigler@gmail.com ()Lecture 3: Statistical estimation and inference December 15, 2008 15 / 1



Estimation and inference

If we know or assume the distribution of the data, it is possible to
derive the distribution of our estimator.

Example
Take the estimator of the sum: θ =

∑
xi and assume X follows a

Poisson distribution: xi ∼ P(λ). As X + Y has still a Poisson
distribution, θ̂ ∼ P(nλ)
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Without knowledge or assumption about the observations, how
to know the distribution of the estimate, as we have only one
realization of it?

Asymptotic theory: when n→∞
Bootstrap
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A (prematurated) intro to bootstrap

Bootstrap principle: As you consider the observations as
random, try to have another set of these observations.

Natural sciences: make same experiment again
Economics: resample

Resampling:
1 Compute θ̂ on X = {xi , x2, . . . , xn}
2 Resample with replacement: obtain new

X ∗ = {x∗i , x∗2 , . . . , x∗n}
3 Compute new θ̂∗ on X ∗

4 Repeat 2 and 3 10000 times and obtain 10000 θ̂i∗

5 Operation 4 gives you the bootstrap distribution
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Bias of an estimator

We will see first a propriety related to the expectation of the
estimator:

Definition
Bias(θ̂) ≡ E [θ̂]− θ

Definition
θ is an unbiased estimator: ⇔ Bias(θ̂) = 0⇔ E [θ̂]− θ
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Efficiency 1

After having spoken about the expectation of the estimator, we
speak about its variance:

Definition
Let θ̂1 and θ̂2 be two unbiased estimators. θ̂1 is relatively more
efficient than θ̂2 if Var(θ̂1) < Var(θ̂1)
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Efficiency 2: Cramer-Rao Bound

The variance of any estimator has a lower bound: it can’t be
lower than a quantity obtained from the Cramer-Rao Bound.

Proposition

Var
(
θ̂
)
≥ 1
I(θ)

Definition
An unbiased estimator θ̂ is efficient if it reaches the
Cramer-Rao boud, ie: Var(θ̂) = 1

I(θ)

That is, no unbiased estimator can have a smaller variance!
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Remember:
That is, no unbiased estimator can have a smaller
variance!

But it is possible that a biased estimator has a lower variance!

So how to compare?
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Mean square error MSE

Define the Mean square error (MSE):

Definition
MSE(θ̂|θ) ≡ E

(
(θ̂ − θ)2

)
It can be better understood/interpreted from:

Proposition
MSE(θ̂|θ) = Bias(θ̂)2 + Var(θ̂)

Hence it allows to compare biased estimators.

Matthieu Stigler Matthieu.Stigler@gmail.com ()Lecture 3: Statistical estimation and inference December 15, 2008 22 / 1



Robustness

What happens if we add some new observations, potentially
false/extrem (outliers)?

Definition
An estimator is robust if it is not attracted by extreme values.

compare: mean and median
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All the proprieties were discussed based on the finite
sample/exact distribution.
What happens if my sample is growing? Do I get to the true
value if I have more and more informations?

Study the asymptotic proprieties: n→∞
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Consistency 1

Remember:

Definition
Xn converges to X if limn→∞ p(|θ̂n − θ| > ε) = 0 ∀ ε > 0.

X can be a random variable or a constant.
We are interested here in the convergence to the true value
(constant).

Definition
θ̂n is convergent/consistent if
limn→∞ p(|θ̂n − θ| > ε) = 0 ∀ ε > 0.
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Consistency 2

Notation
θ̂

p−→ θ or plim θ̂ = θ

Relation between unbiasedness and consistency of an
estimator?

No one!
Estimator can be:

Consistent and unbiased (best!)
Consistent but biased (often)
Unbiased but not consistent
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Consistency 3

Nevertheless:

Proposition{
E[θ̂] = θ et limn→∞ Var[θ̂] = 0

}
⇒ θ̂

p−→ θ

Recall that: MSE(θ̂|θ) = Bias(θ̂)2 + Var(θ̂)

Proposition

limn→∞MSE(θ̂|θ) = 0⇒ θ̂
p−→ θ
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Often, the finite sample distribution of the estimator is unknown,
unless we make assumptions about the distribution of the
observations.
But we can know sometimes its asymptotic distribution!

Definition
Fn

d−→ F

Example

By the central limit theorem: X̄ d−→ N (0, σ
2

n )

This result is independant on the distribution of the observations
(no assumption needed).
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We will see how to apply this:
Variance
Expectation
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Compare the properties of two estimators of var 1/n and 1/n-1
-bias: S2

n−1 unbiased
-var: S2

n has a smaller variance
-MSE: S2

n has a smaller MSE
-Consistency: both are convergent!
-Distribution: (n − 1) s2

σ2 ∼ χ2
n−1
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Convergence of estimator for variance

Theorem
s2

n
p−→ σ2

Proof.
Rewrite: s2

n = 1
n

∑n
i=1 (yi − y)2 =

(
1
n

∑n
i=1 y2

i

)
− y2

Then study:

y2 p−→ µ2 by Slutzky theorem
1
n

∑n
i=1 (yi − y)2 p−→ E[x2] = µ2 + σ2

So s2
n

p−→ µ2 + σ2 − µ2 = σ2

Matthieu Stigler Matthieu.Stigler@gmail.com ()Lecture 3: Statistical estimation and inference December 15, 2008 33 / 1



Study the properties of the mean as estimator of the expected
value:

-unbiased
-not robust
-convergent by law of large numbers
-asymptotically normal by central limit theorem
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[
x − 2σ(X)√

n ; x + 2σ(X)√
n

]
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Exercises

Show that E(s2
n) = n−1

n V (X )

Idea: use that 1
n

∑n
i=1 (xi − x)2 can be rewritten as: (try also to

prove it!)
=
(

1
n

∑n
i=1 x2

i

)
− x2

Exercise 2: Show that E(s2
n) = V (X ) if µ is known!

Idea: same as before, but starting from: 1
n

∑n
i=1 (xi − µ)2 and µ

is here a constant!

You will always need for that: recall Var(X ) = E [X 2]− E [X ]2)
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Exercises 2

Defining:
Z = X̄−µ

σ/
√

n
(recall that Z then follows asymptotically a standard normal!)
We want to obtain a confidence interval of the form:
P(−b ≤ µ ≤ b) = 1− α = 0.95.
And the result is:
P
(

X̄ − a σ√
n ≤ µ ≤ X̄ + a σ√

n

)
where a = Φ−1(0.975) = 1.96 ,

Why? Show it!
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