Lecture 3: Statistical estimation and inference

Matthieu Stigler

Matthieu.Stigler@gmail.com

December 15, 2008

convergence of a random variable

Definition (Convergence)

$$X_n$$
 converges to X if $\lim_{n\to\infty} p(|\hat{\theta}_n - \theta| > \epsilon) = 0$ $\forall \epsilon > 0$.

X is a variable or a constant!

Theorem (Weak law of large numbers)

$$\lim_{n\to\infty} \Pr(|\bar{X}_n - \mu| < \varepsilon) = 1$$

convergence in distribution

Definition

 X_n converge in distribution/law to X:

$$lim_{n\to\infty} \Pr(X_n < a) = \Pr(X < a) \quad \forall a$$

Notation

$$X_n \xrightarrow{\mathcal{L}} X$$

χ^2 distribution:

Definition (Chi square law)

If
$$X_i$$
 iid $\sim \mathcal{N}(0,1)$ and $Q = \sum_{i=1}^k X_i^2$ then $Q \sim \chi_k^2$

Proposition (Convergence of chi 2)

$$lim_{k\to\infty}\chi_k^2 \sim \mathcal{N}(k,2k)$$

Student distribution:

Definition (Student distribution:)

If
$$X \sim \mathcal{N}(0,1)$$
 and $Y \sim \chi^2(k)$ then $Z = \frac{X}{\sqrt{Y/\nu}} \sim t(k)$. (provided X and Y are independent):

Proposition (Convergence of student dis)

$$lim_{k\to\infty}t(k)\sim\mathcal{N}(0,1)$$

Fisher distribution:

Definition (Fisher distribution:)

If $X \sim \chi_k^2$ and $Y \sim \chi^2(I)$ then $\frac{X/k}{Y/I} \sim F_{k,I}$. (provided X and Y are independent):

central limit theorem

Theorem (central limit theorem)

$$\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0,1)$$

Outline

Often, we are interested in estimating some values:

- Some usual numbers
 - Number of inhabitants
 - Proportion of right-hand writers
- Parameters of a distribution
 - Expectation
 - Variance
 - Min or max
 - Median or any quantile
- Parameters of a model

But with estimation we will always obtain a value!

- Does this value have a sens?
- How sure am I about this value?
- How is this value affected if I add one observation?

Statistical philosophy: consider the experiment / sample as a result of random variables.

So our estimation is also random!!

So we now define an estimator:

Notation

We write the true value θ

Definition

An estimator is a function of the observed values.

$$\hat{\theta} = f(x_1, x_2, \dots, x_n)$$

Definition

The value obtained from the estimator is called an estimate and is written: $\hat{\theta}$

Estimator

As the observations are considered as random variables, the estimator is also a random variable, it has furthermore:

- A distribution
- An expectation
- A variance

Outline

If we know or assume the distribution of the data, it is possible to derive the distribution of our estimator.

Example

Take the estimator of the sum: $\theta = \sum x_i$ and assume X follows a Poisson distribution: $x_i \sim \mathcal{P}(\lambda)$. As X + Y has still a Poisson distribution, $\hat{\theta} \sim \mathcal{P}(n\lambda)$

Without knowledge or assumption about the observations, how to know the distribution of the estimate, as we have only one realization of it?

- Asymptotic theory: when $n \to \infty$
- Bootstrap

A (prematurated) intro to bootstrap

Bootstrap principle: As you consider the observations as random, try to have another set of these observations.

- Natural sciences: make same experiment again
- Economics: resample

Resampling:

- **①** Compute $\hat{\theta}$ on $X = \{x_i, x_2, \dots, x_n\}$
- Resample with replacement: obtain new $X^* = \{x_i^*, x_2^*, \dots, x_n^*\}$
- **3** Compute new $\hat{\theta}^*$ on X^*
- **10000** Repeat 2 and 3 10000 times and obtain 10000 $\hat{\theta}^{i*}$
- Operation 4 gives you the bootstrap distribution

Bias of an estimator

We will see first a propriety related to the expectation of the estimator:

Definition

$$\textit{Bias}(\hat{ heta}) \equiv \textit{E}[\hat{ heta}] - heta$$

Definition

 θ is an unbiased estimator: $\Leftrightarrow Bias(\hat{\theta}) = 0 \Leftrightarrow E[\hat{\theta}] - \theta$

Efficiency 1

After having spoken about the expectation of the estimator, we speak about its variance:

Definition

Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two **unbiased** estimators. $\hat{\theta}_1$ is relatively more efficient than $\hat{\theta}_2$ if $Var(\hat{\theta}_1) < Var(\hat{\theta}_1)$

Efficiency 2: Cramer-Rao Bound

The variance of any estimator has a lower bound: it can't be lower than a quantity obtained from the Cramer-Rao Bound.

Proposition

$$\operatorname{Var}\left(\widehat{\theta}\right) \geq \frac{1}{\mathcal{I}(\theta)}$$

Definition

An **unbiased** estimator $\hat{\theta}$ is efficient if it reaches the

Cramer-Rao boud, ie: $Var(\hat{\theta}) = \frac{1}{\mathcal{I}(\theta)}$

That is, no unbiased estimator can have a smaller variance!

Remember:

That is, no **unbiased** estimator can have a smaller variance!

But it is possible that a biased estimator has a lower variance!

So how to compare?

Mean square error MSE

Define the Mean square error (MSE):

Definition

$$\mathsf{MSE}(\hat{\theta}|\theta) \equiv \mathbb{E}\left((\hat{\theta} - \theta)^2\right)$$

It can be better understood/interpreted from:

Proposition

$$\mathsf{MSE}(\hat{\theta}|\theta) = \mathit{Bias}(\hat{\theta})^2 + \mathsf{Var}(\hat{\theta})$$

Hence it allows to compare biased estimators.

Robustness

What happens if we add some new observations, potentially false/extrem (outliers)?

Definition

An estimator is robust if it is not attracted by extreme values.

compare: mean and median

Outline

All the proprieties were discussed based on the finite sample/exact distribution.

What happens if my sample is growing? Do I get to the true value if I have more and more informations?

Study the asymptotic proprieties: $n \to \infty$

Consistency 1

Remember:

Definition

$$X_n$$
 converges to X if $\lim_{n\to\infty} p(|\hat{\theta}_n - \theta| > \epsilon) = 0$ $\forall \epsilon > 0$.

X can be a random variable or a constant.

We are interested here in the convergence to the true value (constant).

Definition

 $\hat{\theta}_n$ is convergent/consistent if

$$\lim_{n\to\infty} p(|\hat{\theta}_n - \theta| > \epsilon) = 0 \quad \forall \epsilon > 0.$$

Consistency 2

Notation

$$\hat{\theta} \xrightarrow{p} \theta$$
 or $plim \hat{\theta} = \theta$

Relation between unbiasedness and consistency of an estimator?

No one!

Estimator can be:

- Consistent and unbiased (best!)
- Consistent but biased (often)
- Unbiased but not consistent

Consistency 3

Nevertheless:

Proposition

$$\left\{\mathsf{E}[\hat{\theta}] = \theta \quad \mathsf{et} \quad \lim_{n \to \infty} \mathsf{Var}[\hat{\theta}] = 0\right\} \Rightarrow \hat{\theta} \stackrel{p}{\to} \theta$$

Recall that: $MSE(\hat{\theta}|\theta) = Bias(\hat{\theta})^2 + Var(\hat{\theta})$

Proposition

$$\lim_{n\to\infty} MSE(\hat{\theta}|\theta) = 0 \Rightarrow \hat{\theta} \xrightarrow{p} \theta$$

Often, the finite sample distribution of the estimator is unknown, unless we make assumptions about the distribution of the observations.

But we can know sometimes its asymptotic distribution!

Definition

$$F_n \xrightarrow{d} F$$

Example

By the central limit theorem: $\bar{X} \xrightarrow{d} \mathcal{N}(0, \frac{\sigma^2}{n})$

This result is independent on the distribution of the observations (no assumption needed).

Outline

We will see how to apply this:

- Variance
- Expectation

Compare the properties of two estimators of var 1/n and 1/n-1

- -bias: S_{n-1}^2 unbiased
- -var: S_n^2 has a smaller variance
- -MSE: S_n^2 has a smaller MSE
- Consistency: both are convergent!
- -Distribution: $(n-1)\frac{s^2}{\sigma^2} \sim \chi^2_{n-1}$

Convergence of estimator for variance

Theorem

$$s_n^2 \xrightarrow{p} \sigma^2$$

Proof.

Rewrite: $s_n^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2 = (\frac{1}{n} \sum_{i=1}^n y_i^2) - \overline{y}^2$

Then study:

- $\overline{y}^2 \xrightarrow{p} \mu^2$ by Slutzky theorem
- $\frac{1}{n}\sum_{i=1}^{n}(y_i-\overline{y})^2 \xrightarrow{p} \mathsf{E}[x^2] = \mu^2 + \sigma^2$

So
$$s_n^2 \xrightarrow{p} \mu^2 + \sigma^2 - \mu^2 = \sigma^2$$

Study the properties of the mean as estimator of the expected value:

- -unbiased
- not robust
- -convergent by law of large numbers
- -asymptotically normal by central limit theorem

Outline

$$\left[\overline{x}-2rac{\sigma(X)}{\sqrt{n}};\overline{x}+2rac{\sigma(X)}{\sqrt{n}}
ight]$$

Exercises

Show that $E(s_n^2) = \frac{n-1}{n}V(X)$ ldea: use that $\frac{1}{n}\sum_{i=1}^n (x_i - \overline{x})^2$ can be rewritten as: (try also to prove it!) $= (\frac{1}{n}\sum_{i=1}^n x_i^2) - \overline{x}^2$

Exercise 2: Show that $E(s_n^2) = V(X)$ if μ is known! Idea: same as before, but starting from: $\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$ and μ is here a constant!

You will always need for that: recall $Var(X) = E[X^2] - E[X]^2$

Exercises 2

Defining:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

(recall that Z then follows asymptotically a standard normal!)

We want to obtain a confidence interval of the form:

$$P(-b \le \mu \le b) = 1 - \alpha = 0.95.$$

And the result is:

$$P\left(\bar{X} - a\frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + a\frac{\sigma}{\sqrt{n}}\right)$$

where $a = \Phi^{-1}(0.975) = 1.96$,

Why? Show it!

