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The OLS estimator continued

e As we discussed yesterday, the OLS estimator is a means of
obtaining good estimates of 3; and (3, for the relationship
Y =01+ 0X1+e€

e Let us now move towards drawing inferences about the true
(1 and (2, given our estimates ﬁl and BAQ. This requires
making some valid assumptions about X; and €. These
assumptions also evoke certain useful statistical properties of
OLS, as constrasted with the purely numerical properties
which we saw yesterday.
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Assumptions of OLS regression

e Assumption 1: The regression model is linear in the
parameters. Y = 31 + G2 X; + u;. This does not mean that Y
and X are linear, but rather that 51 and (3 are linear.
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Assumptions of OLS regression

e Assumption 1: The regression model is linear in the
parameters. Y = 31 + G2 X; + u;. This does not mean that Y
and X are linear, but rather that 51 and (3 are linear.

e Assumption 2: X values are fixed in repeated sampling.

e Assumption 3: The expectation of the disturbance u; is zero.
Thus, the distribution of u; given a value of X; (in the
population) is symmetric around its mean. (Show figure).
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e Assumption 4: The variance of u; is the same for all
observations, i.e. in the above distribution, the distribution of
u; given each value of X; has the same variance. This is an
important property called homoskedasticity.
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e Assumption 4: The variance of u; is the same for all
observations, i.e. in the above distribution, the distribution of
u; given each value of X; has the same variance. This is an
important property called homoskedasticity.

e Assumption 5: There is no correlation between the u;
(disturbances) of different observations. This is called
auto-correlation or serial-correlation. It is seen more in
time series analysis than cross-sectional analysis.
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e Assumption 4: The variance of u; is the same for all
observations, i.e. in the above distribution, the distribution of
u; given each value of X; has the same variance. This is an
important property called homoskedasticity.

e Assumption 5: There is no correlation between the u;
(disturbances) of different observations. This is called
auto-correlation or serial-correlation. It is seen more in
time series analysis than cross-sectional analysis.

e Assumption 6: The covariance between u; and X; is zero.
Intuitively, since we express Y as a sum of X; and U;, if these
two are correlated, then we must include a covariance term in
the summation. So, by assumption, the covariance = 0.
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Assumptions of OLS regression

e Assumption 7: The number of sample observations is greater
than the number of parameters to be estimated.
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than the number of parameters to be estimated.

e Assumption 8: The var(X) must be finite: The X values in a
given sample must not all be the same
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e Assumption 9: The regression model is correctly specified.
There is no specification error, there is no bias
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Assumptions of OLS regression

e Assumption 7: The number of sample observations is greater
than the number of parameters to be estimated.

o Assumption 8: The var(X) must be finite: The X values in a
given sample must not all be the same

e Assumption 9: The regression model is correctly specified.
There is no specification error, there is no bias

e Assumption 10: There is no perfect multicollinearity, no two
X; values can be expressed as a perfect linear combination of
each other.
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Statistical properties that emerge from the assumptions

Theorem (Gauss Markov Theorem)

In a linear model in which the errors have expectation zero and are
uncorrelated and have equal variances, a best linear unbiased
estimator (BLUE) of the coefficients is given by the least-squares
estimator

BLUE estimator

Linear: It is a linear function of a random variable

Unbiased: The average or expected value of ﬂAg = 6o

Efficient: It has minimium variance among all other estimators

However, not all ten classical assumptions have to hold for the
OLS estimator to be B, L or U.
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Interpreting an OLS coefficient/hypothesis testing

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max
-2.77652 -0.77009 0.06778 0.60591 3.44186

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.7816 0.2132 8.355 4.41e-13
X 3.0457 0.0398 76.531 < 2e-16

Residual standard error: 1.087 on 98 degrees of freedom
Multiple R-squared: 0.9835, Adjusted R-squared: 0.9¢
F-statistic: 5857 on 1 and 98 DF, p-value: < 2.2e-16
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Interpreting an OLS coefficient/hypothesis testing

density.default(x =r)
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Algebraic notation of the coefficient /estimator

e The least squares result is obtained by minimising
(v = BoX) (v — B1X)

o Expanding, y'y — 01Xy — y' X1 + 1 X' X%

¢ Differentiating with respect to 31, we get
—2X'y +2X'Xp3 =0

e Or X'Xp31 =Xy

e Or B = (XX) 7' X'y
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Properties of the estimators

Testing a hypothesis about the estimator
We know that:
B=XX)X'Y
= (X'X)IX(XB +¢€)
=B+ (X' X) ' Xe
And now take the expectation:

E[B] = B8+ (X'X) "' X'E[¢]
=5+0
=
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e So far, we have not used the normality of residual assumption
to derive any of our results.

e This assumption, however, is useful to test a hypothesis about
an estimator.

e This allows us to test a hypothesis about B
Theorem
A 0.2 X’X -1
B~ N (B, XX
Proof.

o Either with the assumption that ¢ ~ N(0, 02)
e Or asymptotically by TCL
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Some useful numbers: R?

e R?, or the coefficient of goodness-of-fit of a regression,
measures the extent of overlap between the variables Y and X.
(Show Venn diagram). Since it is a ratio variable, it lies
between 0 and 1.

e Technically, it can be expressed as:

e Y-V =82V X - X+ S u?, or
e TSS = ESS + RSS
e R? = ESS/TSS

e This is a useful number, but it must be kept in mind that it is

not the best/only indicator of how “good” the regression is.

e Spurious regression: Two numbers that are statistically, but
not causally related.

e As you add more variables to the regression, the R? only
increases!
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An example with R: Dangers of R?

Call:
lm(formula = x ~ y)

Residuals:
Min 1Q Median 3Q Max
-4.8300 -2.6357 -0.1053 2.7757 5.3684

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept)  4.6446 0.3189 14.567 <2e-16
y -0.1890 0.3432 -0.551 0.583

Residual standard error: 3.024 on 98 degrees of freedom
Multiple R-squared: 0.003084, Adjusted R-squared: -(
F-statistic: 0.3032 on 1 and 98 DF, p-value: 0.5832



Introduction Assumptions of OLS regression Gauss-Markov Theorem Interpreting the coefficients Some useful numbers A N

An example with R: Dangers of R?

Call:
Im(formula = x = y + m)

Residuals:
Min 1Q Median 3Q Max
-4.8994 -2.7182 -0.2155 2.8353 5.5601

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 4.5328 0.3218 14.084 <2e-16
y -0.1355 0.3409 -0.397 0.6919
m -0.5234 0.2976 -1.759 0.0817

Residual standard error: 2.992 on 97 degrees of freedom
Multiple R-squared: 0.0339, Adjusted R-squared: 0.0:
F-statistic: 1.702 on 2 and 97 DF, p-value: 0.1878
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An example with R: Dangers of R?

Call:
Im(formula = x ~ y + m + 2)

Residuals:
Min 1Q Median 3Q Max
-4.9964 -2.4296 -0.3385 2.6638 5.7291

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.5316 0.3225 14.052 <2e-16
y -0.1402 0.3417 -0.410 0.683
m -0.4979 0.2999 -1.660 0.100
z -0.2285 0.2904 -0.787 0.433

Residual standard error: 2.998 on 96 degrees of freedom
Multiple R-squared: 0.04009, Adjusted R-squared: 0.(

Neatat+aat+ar~e 41 2228 A1 2 a+nA QA Iy metrnli1as N D71
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Some useful numbers: Adjusted R?

e This helps reduce the danger of R?, as it adjusts the value of
R? to the number of independent variables in the model.

e R =1-21(1-R?)

e But it is still related to R?
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Some useful numbers: Akaike Information Criterion

e Another way of measuring goodness of fit, adjusted for the
number of variables

o AIC = e?*/"RSS/n

e Lower AIC is better, and 2k/n can be interpreted as the
“penalty factor”.
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A Monte-Carlo simulation

density.default(x = c)
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Some issues in model specification

e Scaling and units of measurement: Interpreting B1 and (>
when X is expressed in different ways

e Standardised coefficients

e Various functional forms: Linear, log-linear, lin-log etc
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Thank you.
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