Hypothesis testing and OLS Regression

NIPFP

14 and 15 October 2008
Overview

Introduction

Assumptions of OLS regression

Gauss-Markov Theorem

Interpreting the coefficients

Some useful numbers

A Monte-Carlo simulation

Model Specification
The OLS estimator continued

- As we discussed yesterday, the OLS estimator is a means of obtaining good estimates of β_1 and β_2, for the relationship $Y = \beta_1 + \beta_2 X_1 + \epsilon$

- Let us now move towards drawing inferences about the true β_1 and β_2, given our estimates $\hat{\beta}_1$ and $\hat{\beta}_2$. This requires making some valid assumptions about X_i and ϵ. These assumptions also evoke certain useful statistical properties of OLS, as constrained with the purely numerical properties which we saw yesterday.
Assumptions of OLS regression

- Assumption 1: The regression model is linear in the parameters. \(Y = \beta_1 + \beta_2 X_i + u_i \). This does not mean that \(Y \) and \(X \) are linear, but rather that \(\beta_1 \) and \(\beta_2 \) are linear.
Assumptions of OLS regression

- Assumption 1: The regression model is linear in the parameters. \(Y = \beta_1 + \beta_2 X_i + u_i \). This does not mean that \(Y \) and \(X \) are linear, but rather that \(\beta_1 \) and \(\beta_2 \) are linear.
- Assumption 2: \(X \) values are fixed in repeated sampling.
Assumptions of OLS regression

- Assumption 1: The regression model is linear in the parameters. $Y = \beta_1 + \beta_2 X_i + u_i$. This does not mean that Y and X are linear, but rather that β_1 and β_2 are linear.
- Assumption 2: X values are fixed in repeated sampling.
- Assumption 3: The expectation of the disturbance u_i is zero. Thus, the distribution of u_i given a value of X_i (in the population) is symmetric around its mean. (Show figure).
• Assumption 4: The variance of u_i is the same for all observations, i.e. in the above distribution, the distribution of u_i given each value of X_i has the same variance. This is an important property called homoskedasticity.
• Assumption 4: The variance of u_i is the same for all observations, i.e. in the above distribution, the distribution of u_i given each value of X_i has the same variance. This is an important property called **homoskedasticity**.

• Assumption 5: There is no correlation between the u_i (disturbances) of different observations. This is called **auto-correlation** or **serial-correlation**. It is seen more in time series analysis than cross-sectional analysis.
• Assumption 4: The variance of \(u_i \) is the same for all observations, i.e. in the above distribution, the distribution of \(u_i \) given each value of \(X_i \) has the same variance. This is an important property called **homoskedasticity**.

• Assumption 5: There is no correlation between the \(u_i \) (disturbances) of different observations. This is called **auto-correlation** or **serial-correlation**. It is seen more in time series analysis than cross-sectional analysis.

• Assumption 6: The covariance between \(u_i \) and \(X_i \) is zero. Intuitively, since we express \(Y \) as a sum of \(X_i \) and \(U_i \), if these two are correlated, then we must include a covariance term in the summation. So, by assumption, the covariance = 0.
Assumptions of OLS regression

- Assumption 7: The number of sample observations is greater than the number of parameters to be estimated.
Assumptions of OLS regression

- Assumption 7: The number of sample observations is greater than the number of parameters to be estimated.
- Assumption 8: The var(X) must be finite: The X values in a given sample must not all be the same.
Assumptions of OLS regression

- Assumption 7: The number of sample observations is greater than the number of parameters to be estimated.
- Assumption 8: The var(X) must be finite: The X values in a given sample must not all be the same.
- Assumption 9: The regression model is correctly specified. There is no specification error, there is no bias.
Assumptions of OLS regression

- Assumption 7: The number of sample observations is greater than the number of parameters to be estimated.
- Assumption 8: The var(X) must be finite: The X values in a given sample must not all be the same.
- Assumption 9: The regression model is correctly specified. There is no specification error, there is no bias.
- Assumption 10: There is no perfect multicollinearity, no two X; values can be expressed as a perfect linear combination of each other.
Statistical properties that emerge from the assumptions

Theorem (Gauss Markov Theorem)

In a linear model in which the errors have expectation zero and are uncorrelated and have equal variances, a best linear unbiased estimator (BLUE) of the coefficients is given by the least-squares estimator.

BLUE estimator

- Linear: It is a linear function of a random variable.
- Unbiased: The average or expected value of $\hat{\beta}_2 = \beta_2$.
- Efficient: It has minimum variance among all other estimators.
- However, not all ten classical assumptions have to hold for the OLS estimator to be B, L or U.
Interpreting an OLS coefficient/hypothesis testing

Call:
\texttt{lm(formula = y ~ x)}

Residuals:
\begin{tabular}{cccccc}
Min & 1Q & Median & 3Q & Max \\
-2.77652 & -0.77009 & 0.06778 & 0.60591 & 3.44186 \\
\end{tabular}

Coefficients:
\begin{tabular}{cccccc}
Estimate & Std. Error & t value & Pr(>|t|) \\
(Intercept) & 1.7816 & 0.2132 & 8.355 & 4.41e-13 \\
x & 3.0457 & 0.0398 & 76.531 & < 2e-16 \\
\end{tabular}

Residual standard error: 1.087 on 98 degrees of freedom
Multiple R-squared: 0.9835, Adjusted R-squared: 0.9834
F-statistic: 5857 on 1 and 98 DF, p-value: < 2.2e-16
Interpreting an OLS coefficient/hypothesis testing

```r
density.default(x = r)
N = 100   Bandwidth = 0.2773
```

Number of obs: 1000, R-squared: 0.997
Algebraic notation of the coefficient/estimator

- The least squares result is obtained by minimising
 \((y - \beta_1 X)'(y - \beta_1 X)\)
- Expanding,
 \(y'y - \beta_1' X'y - y' X \beta_1 + \beta_1' X' X \beta_1\)
- Differentiating with respect to \(\beta_1\), we get
 \(-2X'y + 2X'X \beta_1 = 0\)
- Or \(X'X \beta_1 = X'y\)
- Or \(\beta_1 = (XX')^{-1} X'y\)
Testing a hypothesis about the estimator

We know that:

\[\hat{\beta} = (X'X)^{-1}X'Y \]
\[= (X'X)^{-1}X'(X\beta + \epsilon) \]
\[= \beta + (X'X)^{-1}X'\epsilon \]

And now take the expectation:

\[E[\hat{\beta}] = \beta + (X'X)^{-1}X'E[\epsilon] \]
\[= \beta + 0 \]
\[= \beta \]
• So far, we have not used the normality of residual assumption to derive any of our results.
• This assumption, however, is useful to test a hypothesis about an estimator.
• This allows us to test a hypothesis about \(\hat{\beta} \).

Theorem

\[
\hat{\beta} \sim \mathcal{N}(\beta, \frac{\sigma^2(X'X)^{-1}}{n})
\]

Proof.

• Either with the assumption that \(\varepsilon \sim \mathcal{N}(0, \sigma^2) \)
• Or asymptotically by TCL
Some useful numbers: R^2

- R^2, or the coefficient of goodness-of-fit of a regression, measures the extent of overlap between the variables Y and X. (Show Venn diagram). Since it is a ratio variable, it lies between 0 and 1.

- Technically, it can be expressed as:
 - $\sum Y_i - \bar{Y}^2 = \beta_2^2 \sum X_i - \bar{X}^2 + \sum u_i^2$, or
 - $TSS = ESS + RSS$
 - $R^2 = ESS/TSS$

- This is a useful number, but it must be kept in mind that it is not the best/only indicator of how “good” the regression is.

- Spurious regression: Two numbers that are statistically, but not causally related.

- As you add more variables to the regression, the R^2 only increases!
An example with R: Dangers of R^2

Call:
```
lm(formula = x ~ y)
```

Residuals:
```
          Min     1Q Median     3Q    Max
-4.8300 -2.6357 -0.1053  2.7757  5.3684
```

Coefficients:
```
                         Estimate Std. Error  t value  Pr(>|t|)
(Intercept)            4.6446     0.3189   14.567 <2e-16
             y          -0.1890     0.3432    -0.551    0.583
```

Residual standard error: 3.024 on 98 degrees of freedom
Multiple R-squared: 0.003084, Adjusted R-squared: -0.007089
F-statistic: 0.3032 on 1 and 98 DF, p-value: 0.5832
An example with R: Dangers of R^2

Call:
`lm(formula = x ~ y + m)`

Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-4.8994</td>
<td>-2.7182</td>
<td>-0.2155</td>
<td>2.8353</td>
<td>5.5601</td>
</tr>
</tbody>
</table>

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|----------|------------|---------|---------|
| (Intercept) | 4.5328 | 0.3218 | 14.084 | <2e-16 |
| y | -0.1355 | 0.3409 | -0.397 | 0.6919 |
| m | -0.5234 | 0.2976 | -1.759 | 0.0817 |

Residual standard error: 2.992 on 97 degrees of freedom
Multiple R-squared: 0.0339, Adjusted R-squared: 0.01398
F-statistic: 1.702 on 2 and 97 DF, p-value: 0.1878
An example with R: Dangers of R^2

Call:
\[
\text{lm(formula = x ~ y + m + z)}
\]

Residuals:

<table>
<thead>
<tr>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.9964</td>
<td>-2.4296</td>
<td>-0.3385</td>
<td>2.6638</td>
<td>5.7291</td>
</tr>
</tbody>
</table>

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------|----------|------------|---------|-----------|
| (Intercept)| 4.5316 | 0.3225 | 14.052 | <2e-16 |
| y | -0.1402 | 0.3417 | -0.410 | 0.683 |
| m | -0.4979 | 0.2999 | -1.660 | 0.100 |
| z | -0.2285 | 0.2904 | -0.787 | 0.433 |

Residual standard error: 2.998 on 96 degrees of freedom
Multiple R-squared: 0.04009, Adjusted R-squared: 0.01009
F-statistic: 1.336 on 3 and 96 DF, p-value: 0.2671
Some useful numbers: Adjusted R^2

- This helps reduce the danger of R^2, as it adjusts the value of R^2 to the number of independent variables in the model.
- $\overline{R}^2 = 1 - \frac{n-1}{n-k}(1 - R^2)$
- But it is still related to R^2
Some useful numbers: Akaike Information Criterion

- Another way of measuring goodness of fit, adjusted for the number of variables

\[\text{AIC} = e^{2k/n} \frac{RSS}{n} \]

- Lower AIC is better, and \(2k/n \) can be interpreted as the “penalty factor”.
A Monte-Carlo simulation

density.default(x = c)

N = 1000 Bandwidth = 0.044
Some issues in model specification

- Scaling and units of measurement: Interpreting $\hat{\beta}_1$ and $\hat{\beta}_2$ when X is expressed in different ways
- Standardised coefficients
- Various functional forms: Linear, log-linear, lin-log etc
Thank you.