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The OLS estimator continued

� As we discussed yesterday, the OLS estimator is a means of
obtaining good estimates of β1 and β2, for the relationship
Y = β1 + β2X1 + ε

� Let us now move towards drawing inferences about the true
β1 and β2, given our estimates β̂1 and β̂2. This requires
making some valid assumptions about Xi and ε. These
assumptions also evoke certain useful statistical properties of
OLS, as constrasted with the purely numerical properties
which we saw yesterday.
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Assumptions of OLS regression

� Assumption 1: The regression model is linear in the
parameters. Y = β1 + β2Xi + ui . This does not mean that Y
and X are linear, but rather that β1 and β2 are linear.

� Assumption 2: X values are fixed in repeated sampling.

� Assumption 3: The expectation of the disturbance ui is zero.
Thus, the distribution of ui given a value of Xi (in the
population) is symmetric around its mean. (Show figure).
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� Assumption 4: The variance of ui is the same for all
observations, i.e. in the above distribution, the distribution of
ui given each value of Xi has the same variance. This is an
important property called homoskedasticity.

� Assumption 5: There is no correlation between the ui

(disturbances) of different observations. This is called
auto-correlation or serial-correlation. It is seen more in
time series analysis than cross-sectional analysis.

� Assumption 6: The covariance between ui and Xi is zero.
Intuitively, since we express Y as a sum of Xi and Ui , if these
two are correlated, then we must include a covariance term in
the summation. So, by assumption, the covariance = 0.
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Assumptions of OLS regression

� Assumption 7: The number of sample observations is greater
than the number of parameters to be estimated.

� Assumption 8: The var(X) must be finite: The X values in a
given sample must not all be the same

� Assumption 9: The regression model is correctly specified.
There is no specification error, there is no bias

� Assumption 10: There is no perfect multicollinearity, no two
Xi values can be expressed as a perfect linear combination of
each other.
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Statistical properties that emerge from the assumptions

Theorem (Gauss Markov Theorem)

In a linear model in which the errors have expectation zero and are
uncorrelated and have equal variances, a best linear unbiased
estimator (BLUE) of the coefficients is given by the least-squares
estimator

BLUE estimator

� Linear: It is a linear function of a random variable

� Unbiased: The average or expected value of β̂2 = β2

� Efficient: It has minimium variance among all other estimators

� However, not all ten classical assumptions have to hold for the
OLS estimator to be B, L or U.
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Interpreting an OLS coefficient/hypothesis testing

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-2.77652 -0.77009 0.06778 0.60591 3.44186

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.7816 0.2132 8.355 4.41e-13
x 3.0457 0.0398 76.531 < 2e-16

Residual standard error: 1.087 on 98 degrees of freedom
Multiple R-squared: 0.9835, Adjusted R-squared: 0.9834
F-statistic: 5857 on 1 and 98 DF, p-value: < 2.2e-16
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Interpreting an OLS coefficient/hypothesis testing

−4 −3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = r)

N = 100   Bandwidth = 0.2773

D
en

si
ty



Introduction Assumptions of OLS regression Gauss-Markov Theorem Interpreting the coefficients Some useful numbers A Monte-Carlo simulation Model Specification

Algebraic notation of the coefficient/estimator

� The least squares result is obtained by minimising
(y − β1X )′(y − β1X )

� Expanding, y ′y − β′1X ′y − y ′Xβ1 + β′1X ′Xβ1

� Differentiating with respect to β1, we get
−2X ′y + 2X ′Xβ1 = 0

� Or X ′Xβ1 = X ′y

� Or β1 = (XX ′)−1X ′y
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Properties of the estimators

Testing a hypothesis about the estimator

We know that:

β̂ = (X ′X )−1X ′Y

= (X ′X )−1X ′(Xβ + ε)

= β + (X ′X )−1X ′ε

And now take the expectation:

E [β̂] = β + (X ′X )−1X ′E [ε]

= β + 0

= β
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� So far, we have not used the normality of residual assumption
to derive any of our results.

� This assumption, however, is useful to test a hypothesis about
an estimator.

� This allows us to test a hypothesis about β̂.

Theorem

β̂ ∼ N (β, σ
2(X
′
X )−1

n )

Proof.

� Either with the assumption that ε ∼ N (0, σ2)

� Or asymptotically by TCL
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Some useful numbers: R2

� R2, or the coefficient of goodness-of-fit of a regression,
measures the extent of overlap between the variables Y and X.
(Show Venn diagram). Since it is a ratio variable, it lies
between 0 and 1.

� Technically, it can be expressed as:

�

∑
Yi − Y

2
= β2

2 ∑
Xi − X

2
+

∑
ui

2, or
� TSS = ESS + RSS
� R2 = ESS/TSS

� This is a useful number, but it must be kept in mind that it is
not the best/only indicator of how “good” the regression is.

� Spurious regression: Two numbers that are statistically, but
not causally related.

� As you add more variables to the regression, the R2 only
increases!
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An example with R: Dangers of R2

Call:
lm(formula = x ~ y)

Residuals:
Min 1Q Median 3Q Max

-4.8300 -2.6357 -0.1053 2.7757 5.3684

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.6446 0.3189 14.567 <2e-16
y -0.1890 0.3432 -0.551 0.583

Residual standard error: 3.024 on 98 degrees of freedom
Multiple R-squared: 0.003084, Adjusted R-squared: -0.007089
F-statistic: 0.3032 on 1 and 98 DF, p-value: 0.5832
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An example with R: Dangers of R2

Call:
lm(formula = x ~ y + m)

Residuals:
Min 1Q Median 3Q Max

-4.8994 -2.7182 -0.2155 2.8353 5.5601

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.5328 0.3218 14.084 <2e-16
y -0.1355 0.3409 -0.397 0.6919
m -0.5234 0.2976 -1.759 0.0817

Residual standard error: 2.992 on 97 degrees of freedom
Multiple R-squared: 0.0339, Adjusted R-squared: 0.01398
F-statistic: 1.702 on 2 and 97 DF, p-value: 0.1878
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An example with R: Dangers of R2

Call:
lm(formula = x ~ y + m + z)

Residuals:
Min 1Q Median 3Q Max

-4.9964 -2.4296 -0.3385 2.6638 5.7291

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.5316 0.3225 14.052 <2e-16
y -0.1402 0.3417 -0.410 0.683
m -0.4979 0.2999 -1.660 0.100
z -0.2285 0.2904 -0.787 0.433

Residual standard error: 2.998 on 96 degrees of freedom
Multiple R-squared: 0.04009, Adjusted R-squared: 0.01009
F-statistic: 1.336 on 3 and 96 DF, p-value: 0.2671
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Some useful numbers: Adjusted R2

� This helps reduce the danger of R2, as it adjusts the value of
R2 to the number of independent variables in the model.

� R
2

= 1− n−1
n−k (1− R2)

� But it is still related to R2
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Some useful numbers: Akaike Information Criterion

� Another way of measuring goodness of fit, adjusted for the
number of variables

� AIC = e2k/nRSS/n

� Lower AIC is better, and 2k/n can be interpreted as the
“penalty factor”.
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A Monte-Carlo simulation
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Some issues in model specification

� Scaling and units of measurement: Interpreting β̂1 and β̂2

when X is expressed in different ways

� Standardised coefficients

� Various functional forms: Linear, log-linear, lin-log etc
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Thank you.
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