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The US Corn Belt is a major producer of corn and soybeans, which are often cultivated in rotation.
In this chapter, I show how satellite methods can be used to gain several insights into this production
system. Taking advantage of recent developments in yield estimates from satellite data, I build a
dataset of field-level yields for ten years and close to two million fields in nine states. The dataset is
then complemented with weather information, as well as prices.

This field-level dataset helps document several stylised facts that have received less attention.
First, I show how a large proportion of fields always follows a corn-soybean rotation, independent of
any price or weather changes. Second, I document a positive correlation between a field’s potential
for corn and for soybean yields. This fact goes well in hand with the previous fact that many fields
follow rotation patterns. Finally, I show that there is a tendency to plant more often corn on fields
with higher fertility, while low fertility soils tend to be planted to soybeans.

1 Introduction

The aim of this chapter is to describe the dataset assembled, and to conduct an exploratory analysis,
highlighting several stylised facts. In Section 2, I describe the different data sources, crop maps, yield
data, field boundaries as well as weather and price data. Both the crop maps and the yield data are
at the pixel scale, but we are ultimately interested in an analysis at the field level. To do so, I use a
field boundary dataset, the Common Land Unit (CLU). Several important data processing decisions
are made at that step. First of all, only a subset of the fields needs to be kept, as the CLU contains a
very large number of units, sometimes delineating roads or forests. Second, the crop classification for
these selected fields might be imprecise, with multiples crops predicted in the same field. This calls
for a second filtering, where only fields with a high classification agreement are kept. Once the field
selection step is done, the yield data is averaged over each field, removing boundary pixels which
might be contaminated by extraneous signal from roads, farms etc. I describe then how the price data
is constructed, as well as how weather variable are assembled.

In Section 3, I proceed to an exploratory analysis of the dataset, which serves as a starting basis
for the next chapters. I show several interesting stylised facts, which, to the best of my knowledge,
have received less attention in the literature.

2 Data description

To conduct an analysis at the field-level, I assemble data from three main sources: a crop classification
at the pixel level, a yield map for the corresponding corn and soybeans pixels, and a field boundary
dataset. Figure 1 illustrates the three datasets combined. The first panel shows the crop classification,
together with the field boundaries. The second panel shows the yield predictions for the pixels for
which the CDL predicts maize. The third panel shows the soybeans yield predictions.
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Figure 1: Illustration of the CDL, yield and boundary data

2.1 Crop classification

The crop data comes from the USDA Crop Data Layer (CDL) dataset (Boryan et al., 2011). The CDL
classifies Landsat pixels of 30m× 30m into a large number of classes. Corn and soybeans appear in
multiple distinct classes beyond the simple corn and soybeans classes, such as double-crop categories
like “Winter Wheat and Corn” or “Soybeans and Cotton”. Due to the small share of the alternative
classes, I focus here only on the corn and soybeans only categories. The accuracy of the classification
for maize and soybeans in the Corn Belt is very high, in general above 95%1. It is not clear how this
accuracy measure is validated, and practical experience shows that a fair number of pixels appear to
miss-classified. A typical miss-classification, known in the remote sensing literature under the salt and
pepper effect, arises when say a single corn pixel is found in a soy field. This salt and pepper effect can
be seen in the first panel of Figure 1, where a few corn pixels are found in a field otherwise planted to
soybeans. I deal with this issue choosing the mode of the pixel classification for each field, removing
fields where the percentage of the mode is too low. See Section 2.3 for more details.

2.2 Yield data

The yield predictions are based on the scalable satellite-based crop yield (SCYM) method of Lobell
et al. (2015) and Jin et al. (2017). The method predict yields based on the Green Chlorophyll Vegetation
index (GCVI). This index, similar in spirit to the more widely known normalised difference index
(NDVI), is based on the near-infrared (NIR) and green (G) bands, GCVI = NIR/G− 1. The model is
a simple linear regression, including weather covariates W.

yieldit = α + βGCVIit + WΓ + εit (1)

The parameters are obtained using a pseudo training sample obtained from a crop growth model.
In a nutshell, the APSIM crop growth model is calibrated using values representing cultivars and
farming practices typical in the US Midwest. Yields and leaf area index (LAI) variables are simulated
from the model, and the LAI values are converted to GCVI values. The resulting output is a set of
yields, GCVI and weather simulations. This pseudo training sample is used to estimate Equation (1).
Once estimated, the equation is used to predict yield, using the satellite-based GCVI values obtained
from the Landsat satellite, which has a 30x30 m resolution. Further refinements were suggested in Jin

1See https://www.nass.usda.gov/Research_and_Science/Cropland/metadata/meta.php
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et al. (2017), which increase the accuracy of the estimates. This newer version, which I refer henceforth
to as SCYM v2, is however only for corn, yet extends the sample to six more states compared to the
3I states (Iowa, Indiana and Illinois) in the version 1 (SCYM v1).

Both the soybeans and corn models were rerun to add two more years, 2016 and 2017. The soy es-
timates from SCYM v1 and were initially for the 3I states only but were extended to the six more states
used in the Jin et al. (2017) version, i.e. Michigan, Minnesota, Ohio, South Dakota and Wisconsin.

2.3 Field boundaries

An issue with the CDL data is that the analysis is done at the pixel-level, while we are interested
in field-level analysis. There exists however a dataset of fields boundary, the USDA Common Land
Unit (CLU).2 Unfortunately, the actual dataset is not publicly available, so that only a copy of the 2009
version can be used.

Two issues arise when using this dataset. Firstly, as the data is from 2009, fields boundaries may
have changed. Drastic changes are unlikely, but cultivation of two different crops in the same field is
possible. The second issue is that given that the CDL analysis is at the pixel level, instead of being at
the field level, pixels in a field can contain multiple crop classes. Preliminary investigations showed
clear cases of border contamination, where pixels at the edge of the field were attributed other classes
(in particular classes corresponding to bush/forest elements).

These two issues call for specific rules for the attribution of a crop to a given field. Hendricks et al.
(2014) used a centroid-offset rule, where the field’s class is attributed according to the class of the pixel
that lies at a certain distance of the field’s centroid. This procedure suffers from two issues: firstly, it
is not guaranteed that the centroid offset falls within the field itself. Second, if there are really two
crops cultivated in one field, the method will attribute only one class. Arguably, the arbitrariness of
the offset rule should guarantee that there is no bias in which class will be chosen.

Another method is followed by Stevens (2015), who selects the mode of the classes found within
a field. This method does not suffer from the issue of the centroid falling outside the field, yet also
can attribute one class whenever there are actually two. To avoid this issue, I focus on fields with
a relatively high classification agreement, i.e. I set a minimum threshold on the frequency of the
mode. Further, I only take into account for this calculation interior pixels, i.e. pixels that do not touch
the border of the field. This avoids to consider mixed pixels, that are potentially contaminated by
elements outside of the field.

Figure 2 shows the frequency of the mode, with either all pixels taken into account, or only the
interior ones. This is made for all plots in the nine states, using CDL classification for 2015. It is
interesting to see that although the field boundaries were made in 2009, there is still a relatively good
agreement for the year 2015. One can see that taking only interior pixels instead of all pixels leads to a
much better result: a much larger proportion of the fields have 90% or more of the pixels showing the
same value. One see furthermore a few bumps around the value of 50%, 66% and 75%. This suggests
that the field was planted to two distinct crops (or more), using either a 1/2, 1/3 or 1/4 proportion.

To retain only fields with a good classification accuracy, the threshold was set at a minimum of 85%
over all years considered (2008-2015). This is arguably a rather strict value, but it ensures that the data
considered is how high quality. This is particularly important for the yield data, for which we want to
make sure that we are not averaging over contaminated pixels, which can have a drastic effect on the
final yield estimate. In fact, using the high-quality classification fields only, the correlation between
NASS county yields and averages from the SCYM dataset is improved.

2.4 Weather data

Weather variables are introduced as control variables to avoid omitted variable bias. While it is rea-
sonable to think that weather is not influenced by prices, it is still the case that prices might anticipate

2https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-products/

common-land-unit-clu/index
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Figure 2: Agreement of pixel classification, over all fields, 2015 data
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weather events later in the season. To prevent this, I include a large set of weather controls from the
DAYMET dataset (Thornton et al., 2017), which is at a resolution of 1000m × 1000m. The dataset
includes precipitation, minimum and maximum temperatures, as well as partial pressure of water
vapour. These daily measures are averaged per month, and squared terms are included. Growing
degree days (GDD) will be included later on, following the work of Schlenker and Roberts (2006,
2009).

2.5 Price variables

Price variable pM
it and pS

it are futures quotations for post-harvest delivery (December for maize and
November for soybeans), quoted pre- and in-season. The pre-planting period is defined to be the
month of February and March. This is chosen earlier than actual planting times which are Mid April
to May for maize, and May to June for soybeans. Given that the choice of crop is almost only between
maize and soybeans, the planting period relevant to maize is also the one relevant for soybeans.
Finally, this is also the period chosen by Hendricks et al. (2014). The pre-planting price is also relevant
for the yield equation, as farmers can influence yields by choosing specific types of hybrids or the
sowing densities. Later on, I shall include as well a post-planting price, which shall be defined as the
May–June period. This is intended to reflect within season adjustments, such as fertiliser application.
Given the sunk costs already supported, it is expected that post-planting price changes will have a
smaller effect compared to pre-planting ones in the yield equations.

Futures prices are adjusted for the local basis, which is taken as the difference between the closest
delivery futures price and the local spot price at neighbouring elevator. The basis is measured at the
same period that the price is defined, i.e. for pre-planting prices, I use an average of February–March
futures (for the December maturity) and an average of the basis at the same period.

The cash prices were obtained from elevator data found in Bloomberg3. I end up with a dataset
of close to 2000 elevators points. Data at the field level is obtained by spatial interpolation from
neighbouring elevators. I use inverse distance weighting; interpolation parameters are obtained by
cross-validation. It might be objected that possible transportation costs should be considered, taking
for example at distance to the elevator. However, given that I use a fixed-effect strategy at the field-
level, there is no need for such an adjustment, as it will get absorbed by the fixed effects.

Figure 3 shows the location of the grain elevators and a smooth representation of the local basis.
The location of the elevators follows closely where corn and soybeans are planted, compare with

3Bloomberg disseminates data originally collected by Data Transmission Network and Geograin. Data was geolocated, and
databases were consolidated, averaging quotations over close vicinities.
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Figure 3: Location of elevators and basis interpolation (corn, March 2014)
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On ethanol refineries There is an extensive literature (see Motamed et al., 2016 for references) find-
ing that ethanol refineries have an impact on local maize acreage response. Motamed et al. (2016) for
example find that the elasticity of maize acreage with respect to local refining capacity is about 1.5.
As local refineries are likely related to the price variable, this suggests that one should add a refinery
vicinity variable to avoid omitted variable bias. This however raises the concern that we are adding a
so-called bad control (see Angrist and Pischke, 2008 section 3.2.3). Bad control happens when the con-
trol variable is itself endogenous to the outcome variable. This is unfortunately likely to be the case
here, where location of refineries itself depends on acreage response. This is at least the argument
made by Motamed et al. (2016), motivating their search for IV variables. Besides this, effects of the re-
finery location are likely to translate into changes in the local basis (as found by McNew and Griffith,
2005). This implies that the yield response I am measuring is also including the effect of refineries.
This only changes the interpretation of the response coefficients: they include not only year-to-year
variations, but also more longer term variations.

2.6 Yields

2.6.1 Data cleaning

The yield data requires a few cleaning procedures for possible outliers. The SCYM model, in particu-
lar the version 1 for soy, predicts a few negative values. This happens in six of the nine states, with the
most values concentrated in IL and MO. Very high values are also found in a few cases. Setting an up-
per threshold is complicated. We do this looking at the USDA risk management agency (RMA) data
publicly available from Lobell et al. (2014). This contains a random sample of 100 fields per county
in the 3I states over 1995 to 2012. The states have among the highest yield in our subsample, so we
assume that the maxima found in these states are upper bound for the other states. Figure 4 shows
the mean, range and 0.5-99.5% quantile for this dataset. Based on this, we set a maximum threshold
of 350 for corn and 100 for soybeans. This is a very conservative number, which is well higher than
the 99.5% quantile. In fact, doing so we remove 160 corn field-year observations, and 60 soy ones.

Setting a lower limit would be also worthwhile. As the data from RMA however suggests, mini-
mum values can be very low, often close to 5 or 10 [bu/acres] for each crop. The fact that the dataset
is from the risk management agency suggests that these yields are reported to RMA for insurance
purpose. It is possible that with such low yields, farmers would not even harvest the field.4 As
we observe only final yields and do not observe whether a field is harvested or not, these very low
minimum values are relevant for our purpose. In consequence, I do not choose a lower minimum
threshold, and only discard field-year observations with negative yields.

4As a consequence, these low numbers would possibly not enter the NASS county estimates.
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Figure 4: Yields in 3I states, based on RMA

A few fields have also more than one year with negative values. For some of these fields (partic-
ularly in MO), the other years with positive yields are yet very close to zero, as shown in Figure 5.
This suggests that there is something specific about these fields that is not well captured by the SCYM
model. In consequence, I remove the entire fields that have two more more negative values, while for
those with only one negative value, I only remove the specify year.

2.7 Accuracy of the yield estimates

In this section, I discuss first previous estimates of the SCYM accuracy found in the literature. I
analyse then the accuracy of the new SCYM estimates that were rerun for this study, extending it to
2016 and 2017, and adding more states for soybeans.

2.7.1 Previous results from the literature

The accuracy of the SCYM v1 and v2 dataset has been assessed in several previous studies, either
using field-level or county aggregates yields. Lobell et al. (2015) test the accuracy of SCYM v1 in
Illinois, Iowa and Indiana using data for ~10’000 fields obtained from the USDA Risk Management
Agency. They find prediction R2 between 0.14 and 0.58 for the state-year maize pairs, while the R2

on the full sample is 0.35. Predictions for soybeans are less accurate, ranging between 0.03 and 0.5.
Prediction bias in YTrue = α + βŶ + ε arises both in the intercept and slope, although there is no clear
tendency in over- or under-estimation of the values. Disaggregation of the bias suggests that it is
commodity, year and state specific. Farmaha et al. (2016) use the SCYM v1 in Nebraska in a study on
yield gap with 3’000 fields, and obtain predictions R2 ranging from 0.12 to 0.34, with a tendency to
over-estimate yield.

Without field-level data, accuracy of the estimates can be assessed comparing fields aggregated at
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Figure 5: Soy yields of fields with at least two negative yields

the county level to the official USDA NASS county statistics. Lobell and Azzari (2017) use the SCYM
method to study yield heterogeneity at the county level. They predict field-level yield for maize
and soybeans in Illinois, Iowa and Indiana, from 2000 to 2015. Averaging their yield prediction at
the county level, they find R2 of 0.67 and 0.74 for maize and soybeans respectively when comparing
these with USDA county estimates. The SCYM is found to overestimate yields, with larger bias at
higher yields. The authors use then the USDA county averages to calibrate their data. For SCYM v2,
Jin et al. (2017) report R2 of 0.23 and 0.88 against county NASS estimates (with median 0.72) for the 3I
states, with Indiana performing worse than Illinois and Iowa. When extended to the six more states
(Minnesota, Missouri, Wisconsin, Ohio and Michigan) they obtain relatively close R^2 compared to
the 3I states. States with lower prediction accuracy were Michigan, Wisconsin and Missouri, which
the authors explain by pointing out that these states have smaller fields, as well as more sporadic
distribution of field location.

2.7.2 Assessment of the data over the extended period

The SCYM dataset was rerun for this specific study to either extend it in time, adding 2016 and 2017,
or extending in space as well, adding more states for soybean. For corn, we rerun the SCYM v2,
adding years 2016 and 2017. Some of the satellite products used by SCYM were in the meanwhile
updated, so even on the same 2000 to 2015 period, results here are not exactly as those in the Jin et al.
(2017) paper. For soybeans, I used the SCYM v1, that was run initially for the 3I states only. I extended
this to 2016 and 2017, and added six more states.

Corn Figure 6 shows the SCYM v2 versus NASS county means for each state. Points are shown
in different colours for each year, and lines represent the simple regression of SCYM against NASS
yields. The R^2 indicated for each state corresponds to the R2 of the general regression of all county-
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Figure 6: Corn SCYM estimates, by state, 2008 to 2017

Note: colours represent different years, and the lines show the regression of SCYM against NASS
yields. The line in black represent the perfect prediction line with slope 1 and intercept 0.

year pairs within a given state. In general, accuracy numbers are lower than those found in Jin et al.
(2017). Reasons for this are not clear yet. Our data has two more years, but in general adding years
would rather increase the R2 rather than decrease it.5

We see that there are some important state differences. Among the 3I states, Illinois (IL) has a
particularly high overall R2, at 0.82 (correlation of 90%). The regression lines seem well aligned
and relatively parallel to the 0-1 line (in black). Interestingly, the second most accurate state is South
Dakota (SD), which has likewise well-behaved prediction lines. For some states, predictions are much
poorer. Ohio (OH) in particular shows a low overall R2 of 0.34 and some regression lines very distinct
from the 0-1 perfect prediction line.

Soybeans Turning to soybeans from the SCYM v1 model, shown in Figure 7, results are less good.
R2 values are lower and there’s a clear over-estimation bias. There is ongoing work at David Lobell’s
lab to improve the model for soy, which shall be integrated later on in the analysis.

5Indeed, if we have two subsets of data with similar R2, a R2 based on the two datasets assembled would increase if the
two dataset have a different mean-location.

8



Figure 7: Soy SCYM estimates, by state, 2008 to 2017

Note: colours represent different years, and the lines show the regression of SCYM against NASS
yields. The line in black represent the perfect prediction line with slope 1 and intercept 0.
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3 Stylised facts

3.1 Crop shares and cropland expansion

How did cropland evolve over the period of interest? There is a large literature documenting the
recent expansion of cropland in the US Midwest (Lark et al., 2017; Ren et al., 2016; Shao et al., 2016).
Lark et al. (2015) analyze the cropland gains and losses during the 2008-2012 period in the whole
US. They observe an overall large increase in cropland, of about three million acres. In the Corn
Belt, South and North Dakota are the states that experienced the largest increase, whereas Southern
Iowa and Northern Missouri also had a substantial amount of new land. The new cropland rose
primarily at the expense of grassland. Based on the Natural Resource Conservation Service’s (NRCS)
land capability classification (LCC) system, the authors establish that this was mainly marginal land
classified as suffering “severe limitations”. New land was found to be principally cultivated to corn
or soybeans in our area of interest, although some new land was used for wheat in the Western part
of South and North Dakota, and for alfalfa on the opposite side in Wisconsin and Michigan.

Our dataset allows for some limited comparison of this phenomenon. The principal issue we
face is that the data is based on the fields boundaries in 2008. If a land was previously uncultivated
and used after 2008 for agricultural purpose, it might not appear in the dataset. Nevertheless, we
can observe a qualitatively similar phenomenon looking at the shares of crops cultivated during the
period. Figure (8) shows the percentage of the major crops in the two groups of states, 3I and 6+.6 We
see that corn and soybeans dominate the total cultivated area by a large amount. The value is close to
90% in the 3I states, and around 70%-80% in the 6+. This share also increases over time, particularly
in the 6+ states. Figure 9 shows the state-by-state evolution of the six most important other crops.
Interestingly, we see that in the 3I states, there is nearly no other competing crop, the remaining land
being mostly uncultivated (fallow/grass categories). This is in contrast to the states in the 6+ group,
that saw a decline in wheat (MN, OH and SD) and cover/forage crops (MI and WI).

3.2 Rotation patterns

The previous Section (3.1) discussed general patterns of land use and its evolution over time. We
turn now to a discussion of the rotation patterns, investigating how corn and soybeans are cultivated
together. The CDL is particularly suited for this analysis, as it allows to trace back the entire history
of a single field. Several studies have used the CDL for this purpose. Plourde et al. (2013) computes
rotation patterns in the Corn Belt over two periods, 2003-2006 and 2007-2010. Comparing the changes
over time, they find only a slight increase in the total area cultivated to corn and soybeans, but a large
increase in mono-cropped corn. Ren et al. (2016) apply similar techniques in Iowa and find also an
increase in continuous from 2001 to 2012. Stern et al. (2012) find likewise that most of the increase in
corn area in Iowa during the 2007 price increase was achieved by corn-soybeans rotation switching
to a corn-corn one. More generally, Sahajpal et al. (2014) provide an algorithm to identify relevant ro-
tation schemes, addressing the issue that the potential number of different rotations becomes quickly
very large.7 They restrict however their analysis to a relatively short period of three years, and find
that they need up to as 82 rotation sequences to cover 90% of the 13’000 actual rotations.

With the dataset at hand, I revisit several of the findings discussed in the literature. I show first
that the increase in corn monocropping somehow reverted. I show also that there is a large part of
fields that always rotate over the full sample 2008 to 2017, and even over the longer sample 2010 to
2017. To start with, Figure 10 shows the average rotation pattern for corn and soybeans over the 2008-
2017 period. There is in general slightly more corn than soybean on a typical year. The following year,
almost 70% of the fields will rotate. For fields planted to the same crop, a large part will be corn-corn,
while a very small part will be soy-soy.

6The 6+ states correspond to Ohio, South Dakota, Minnesota, Missouri, Michigan and Wisconsin.
7The CDL has 132 distinct classes. So after N years, there are 132N potential rotation schemes. For N = 3, this is 2 millions,

and for N = 4, it is 300 millions.
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Figure 8: Shares of crops over the 2000–2017 period

Note: data shows the percentage shares of the most important crops, based on the CDL.
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Figure 9: Shares of other crops, by state and year

Note: shares based on the fields available retained in the dataset.

Figure 10: Average rotation pattern for corn and soybeans

1 Note: data shows the average shares at time T − 1, and conditional on those, the shares in time T.
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Figure 11: Conditional rotation patterns for fields doing always either corn or soy, starting in 2008

1 Note: data shows the planted share, conditional on previous years, recursively, starting in 2008.

Figure 11 extend the previous figure to the whole period. Starting from the left, we see the share
planted to corn or soybeans in 2008. In 2009, we see how many were planted to corn and soybean,
very similar to the previous figure (which was averaged over all years). The next period, 2010, is
again conditional on the choice of 2009 and 2008. We can see fro example that the share of C-C-C is
the third most frequent sequence, followed by C-C-S. The last column in 2017 shows the resulting
sequences, after ten years. Theoretically, we have 210 = 1024 different possibilities. It is striking
however to realize that there is a large part of fields that always did rotate, at 46%. The share of
fields practising monocropping over the whole period shrinks to 3% for corn, and to a very small
0.7% for soybeans. These numbers were for the restricted subsample of fields that do always either
corn or soybeans over 2008-2017. Figure 17 in the appendix shows the conditional rotation patterns
for all fields, adding the Other category. While we have now 310 ∼ 60′000 possible sequences, the
always-rotating sequence is still strikingly visible.

While the conditional rotation figure indicates clearly a predominant category of always-rotaters
and always-corn, it it less clear which other categories are often represented. The issue is that a
sequence with nine rotations can be represented in many different ways, depending on the time
when the corn or soybean value is repeated. Table 1 shows the percentage of fields doing ten, nine up
to zero rotations, in the subset of fields doing always either C or S, or sample of fields doing at least
once another crop. We see that in the CS-only subset, there is still a large proportion of fields almost
rotating, i.e. doing nine rotations over ten years.

Turning finally to the evolution of the rotating patterns over time, Figure 12 shows the evolution
of the year-to-year rotation patterns. In this subset, the increase in C-C monocropping described
elsewhere in the literature seems to slow down, or even decrease.

Next Figure 13 shows similarly the conditional transition probabilities, rescaled each year to 100%
for each crop. Looking at the first panel for corn, we see what is the probability to stay in corn in
2008, 2009 etc, as well as the probabilities to switch out of corn to the Other category. We see that
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Table 1: Number of rotations per field, percentage

Only CS All

N rotations N Perc N Perc

0.00 41’241 1.9% 245’648 11.2%
1.00 10’454 0.5% 71’136 3.2%
2.00 35’590 1.6% 89’962 4.1%
3.00 23’920 1.1% 85’250 3.9%
4.00 46’783 2.1% 94’674 4.3%
5.00 46’560 2.1% 87’044 4%
6.00 72’769 3.3% 94’661 4.3%
7.00 94’043 4.3% 80’006 3.6%
8.00 133’081 6.1% 85’982 3.9%
9.00 195’883 8.9% 29’892 1.4%

10.00 529’085 24.1% 0 0

Figure 12: Evolution of the year-to-year rotation patterns

1 Note: data shows the share of year-to-year conditional probabilities, on the subset of fields that do always
either corn and/or soy.
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Figure 13: Year to year transition probabilities for each category

1 Note: data shows the share of year-to-year transition probabilities, conditional on the previous crop.

the probability of switching to Other is very low for corn, and low as well for soybeans. When new
land (i.e. from the Other category) enters corn or soybean, it will mainly do so starting with corn. It
should be emphasised here that the percentage shares are rescaled each year for each crop. Observing
a higher rate of exit of Other (high O→ C and O→ S) compared to rate of exit of Corn or Soy to Other
(C → O and S → O) implies that the total share of Other decreases over time. This reinforces the
point made earlier of a decrease in Other crops in the total shares (see Figure 9 and 8).
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Figure 14: Distribution of corn and soybean yields

1 Note: data shows the 2D density estimation of the distribution of corn and soy means per field.

3.3 Land quality model

The crop distribution maps suggest that there are specific patterns of crop location, with some areas
in the 3I planting predominantly corn, and some further South planting more soy. Does this mean
that some areas are good for corn but bad for other? Or is a land that is good for corn also good for
soy? This question is difficult to answer, since we never observe two different yields on the same
field. Luckily enough, with ten years of data, we observe frequently at least one corn and one soy
yield on the same field. To verify the correlation between corn and soybeans yields on the same field,
I average corn and soybean yields for all fields that do at least once corn and once soy. Figure ??
shows the distribution of the plot average yields, over the subsample of fields that do always corn or
soybeans. There is a clear positive correlation between the yields of the two crops: a field that is good
for corn is likely to be also good for soybeans.

Figure 15 shows the average number of years planted to corn, and average number of 〈CS〉 ro-
tations for various values of yields. The left panel shows how many years the fields were planted
to corn. Fields with low average productivity, be it for corn or soybeans, are rarely planted to corn
(and hence often to soybeans). On the other side, higher fertility fields are most likely to be planted
to corn. Turning to the right panel, showing the number of 〈CS〉 rotations, we can see that in general,
the probability of doing many rotations is particularly high for fields that have a rather similar value
of corn and soy yields.

3.4 Yield variations at the county and field level

How much variation in yields is uncovered when moving from a county analysis to a field-level anal-
ysis? Or put differently, how does the between-county variation (observable with official statistics)
compare to the within-county variation (observed with satellite data). This

This questions is important in many aspects. First, it has implications in terms of sampling rates
required to obtain accurate measures of the county average yield. The higher the correlation (the
lower the variation), the lower the number of observations are required to estimate the mean. Second,
it can inform the literature on crop insurance, where the concept of risk pooling is intimately linked
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Figure 15: Average number of corn and rotation per cell

1 Note: data shows the 2D density estimation of the distribution of corn and soy means per field.

to the (spatial) correlation among among observations. Finally, and more generally, it gives an idea
of what we gain by using satellite data instead of county data.

To measure the amount of variation coming from different spatial scales, I run an analysis of
variance (ANOVA). An ANOVA informs on how much each set of variables (here the fixed effects)
contributes to the total variance. Figure 16 shows the percentage of the total variance for different
levels.

4 Conclusion

This chapter gave an overview of the dataset, its different sources, and how it was assembled. Build-
ing on this, an exploratory analysis was carried on, that uncovered several stylised facts that to my
knowledge have not received much attention in the literature. Particularly interesting is the finding
that corn tends to be planted more often on fields that have high apparent yields, and soybean more
often on the lower quality fields. The implications of this finding are discussed in more details in the
next chapter that seeks to estimates the yield rotation effect.
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Figure 16: Analysis of variance of yields and prices

1 Note: data shows shares of total variance explained by each set of fixed effects.

Figure 17: Conditional rotation patterns for all fields, starting in 2008

1 Note: data shows the planted share, conditional on previous years, recursively, starting in 2008.
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