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Abstract

Corn and soybeans are predominantly cultivated in a rotation scheme in the US Midwest. Under-
standing the extent of the rotation effect is important when analyzing the dynamics of crop choice,
as large rotation benefits can make the overall area response more sluggish. Likewise, rotations play
a beneficial role for the environment, allowing to save on fertiliser. Most estimates of the rotation
effect come from experimental farms, which allow a clean identification on a very restricted sub-
sample of fields. I take here another approach, using a large dataset of close to two million fields
in the US Midwest, over ten years. Using observational data raises new challenges. For one, choice
of field and crop is clearly not random: fields with higher fertility tend to be planted to corn more
often than to soybean. This suggest that estimating rotation comparing between field is not the right
approach, and one should seek within field variation. This raises however a new difficulty: by its
very definition, a field in rotation was not planted to the same crop the year before, implying that
we cannot use a standard difference-in-difference approach.

In this paper, I take advantage of a dataset of field-level yields over 9 states in the US Midwest,
spanning ten years. I make three contributions. I firstly document the presence of selection bias,
showing evidence that more fertile fields tend to be planted to corn. An interesting paradox that
arises from this comparison is that fields doing always corn have higher average yields compared
to those doing always rotation, despite not benefiting from the rotation effect. Second, I address
formally the challenges of identifying the rotation effect in presence of non-random crop choice.
I use recent results from the literature on the relationship between fixed effects and difference-in-
difference estimators, and show how to adapt these to the specific context of rotation and its missing
data problem. Finally, I extend the analysis to corn and soybeans fields that were previously culti-
vated to other crops, and show how different the identification approach is.

1 Introduction

The US Corn Belt is an important producer of corn and soybeans, concentrating two thirds of the
area and volume of the US production. In this region, corn and soybeans are usually cultivated in
rotation, alternating between corn and soybeans year after year on the same field. Benefits of rotation
are multiple (for a survey, see Porter et al., 1997; Farmaha et al., 2016). On one hand, changing crop
from year to year reduces pest, given that most parasites are specific to a given crop, and cannot
survive more than a year without their crop. Further, soybeans fix nitrogen, reducing the need for
fertilizer. As a result, a corn field planted in rotation will have a higher expected yield, as well as a
reduced need for fertilizer, than if corn had been planted the previous year.

The presence of this rotation effect has several important consequences for the dynamics of agri-
cultural supply, as well as for the environmental impacts of agriculture. Choice of crop by the farmer
is usually dictated by a comparison of respective expected profit. With rotation effects, the farmer
takes additionally into account that despite a possible lower return on the second crop, choosing that
lower productivity crop might be profitable on the long term. At the aggregate level, rotation ef-
fects alter the responsiveness of crop choice to prices. Intuitively, price movements need to be larger
to induce a field following rotation to be affected to say corn only. But on the other side, the same
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Figure 1: Rotating versus non-rotating fields in Iowa

Source: Sawyer (2014)

price increase will induce soy-only fields to switch to rotation. Hendricks et al. (2014b) show also
that rotation effects makes the long-term area response weaker than the short-term one, contrary to
the traditional model of partial adjustment (Nerlove, 1956; Nerlove and Bessler, 2001). Furthermore,
as I show in Section ??, strong rotation effects suggest that an expansion of area made by forego-
ing rotation introduces fields of lower productivity. This implies that yield response observed at the
aggregate level is weaker than observed at the field-level, due to this composition effect. On the en-
vironmental side, rotation acts as a natural fertilizer, cutting down the need for chemical fertilizer.
This reduces in turn the risk of leaching and thereby potentially reduces damage to water streams
and algal blooms. Hendricks et al. (2014a) show how increases in corn prices induce a reduction in
the number of rotating fields, and estimate the impact on the hypoxic zone in the Gulf of Mexico.
Lastly, estimates of the rotation effect are extensively used to formulate crop choice and nitrogen use
recommendations by extension agencies (Morris et al., 2018).

Various studies have sought to estimate the effect of rotation, using either experimental plots or
observational data. Porter et al. (1997) study a small sample of experimental plots in Minnesota and
Wisconsin, and report a 15% increase in corn yields when previously cropped with soybeans, with
some heterogeneity where lower-yielding fields see a higher increase, close to 25%. Similar numbers
were obtained for soybeans. Another set of experimental data, used by Hennessy (2006) and Liv-
ingston et al. (2015), suggests rotation effects increasing yields for both crops by 25%. Based on a
similar dataset from experimental plots by the same Iowa University Sawyer (2014, 2009), Figure 1
compares the yields of rotating (SC, dashed) and corn-corn (CC) fields, at different levels of fertilizer
rate, over multiple years. It is clear from the picture that rotating fields always enjoy a higher yield.
This rotation effect tends to decrease at higher levels of fertilizer/yield. Fertilizer rates on this experi-
ment were set ranging from 0 to 240, which do not correspond to levels that would be typically found
in practice. A farmer following the “economically optimal N rate” recommendations of 160 [lb N
/acre] for rotating fields, and 200 [lb N/acre] for non rotating ones during that period (Sawyer, 2014)
would obtain an average rotation effect of 15%. This number, averaged over 2009 to 2014, exhibits
however a large variance, with a minimum rotation effect of 2% in 2010 and maximum of 33% in 2009.

Seifert et al. (2017) use a rich observational dataset obtained from the USDA containing around
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Table 1: Average shares of crop sequences
Crop Lag Crop Percentage
Corn Corn 15
Corn Soy 40
Soy Corn 39
Soy Soy 5

Source: own computation from CDL. Data is the 2008-2017 average of the year-to-year shares.

120’000 fields in the U.S. Midwest.1 They find lower rotation effects compared to studies based on
experimental plots. Their favourite estimate for corn is 4.3% (6.7 [bu/acre]) for corn and 10% for
soybeans (4.7 [bu/acre]). (Farmaha et al., 2016) use data from farmer-reported yields in Nebraska,
over from four to eight years. They find a 2-5% (3-9 [bu/acre]) rotation effect for corn, and a 5% 2-
years rotation effect for soybeans, comparing the sequence CCS to SCS. They note that their estimate
of the rotation effect for corn is lower than results from experimental plot, and suggest that it might
be due to the fact that their sample contain mostly high-yield fields, for which the rotation effect is
smaller.

The discussion of the rotation effect so far was focused on the previous crop. It is possible however
that the dependence of current yields on previous crop choice goes beyond one year, i.e. yields exhibit
more than a one-year memory. Most of the studies indicate that corn has only a one year memory:
there is no noticeable difference between a 〈SSC〉 and a 〈CSC〉 sequence. On the other side, soybeans
is usually found to exhibit a two-year memory, where fields with two previous years of corn (〈CCS〉)
giving higher yields than fields with one year of corn and soybeans previously (〈SCS〉) (Farmaha
et al., 2016; Porter et al., 1997).

In this paper, I revisit these estimates using a novel dataset of satellite-based yield estimates, for
more than one million fields, in 9 states of the Corn Belt, over ten years. This dataset covers a large
proportion of fields in each county, and hence reflects natural variations in field conditions not nec-
essarily captured by previous studies. I revisit also the methods used to estimate the rotation effect,
arguing that previous studies do not capture the causal effect of rotation, but a mixed estimate in-
cluding selection effects. I use recent developments in the panel data literature to wipe out selection
effect and to account for heterogeneity.

2 Stylized facts on rotation

The data on crop choice used here is the USDA Cropland Data Layer (CDL) from Boryan et al. (2011).
It is published every year, started in 2000 with a few states in the Corn Belt, and covered the entire
US from 2008 onwards. Spatial resolution is 30m. Classification accuracy in the US Corn Belt is rather
high, with a claimed accuracy of close to 90% for corn and soybeans. A few studies have used this
dataset to study rotation patterns. See Chapter II, Section ?? for more details on the data. Several
studies used the CDL dataset to analyse rotation patterns, with the general finding that monocrop-
ping increased over the 2000-2010 period, see Chapter II, Section ?? for a survey.

In this study, I analyze corn and soybeans during 2008 to 2017 period. This still represents a large
part of the total cropland, 95% for the 3I states (Iowa, Illinois and Indiana), and 70% on average in the
six remaining ones. Table 1 shows the average one-year-ahead cropping pattern between corn and
soybeans, for fields doing always either corn or soybeans. A large part (80%) of the fields are under
rotation from one year to the other. Corn-corn sequences (C − C) are much more frequent than the
soy-to-soy ones (C− C).

The previous table shows typical cropping patterns, averaging year to year shares. But how many
of the fields end up in a long-term 〈CCCCCCCCC〉 sequence over the ten years? Figure 2 shows the

1The six states in the study are Iowa, Illinois, Indiana, Minnesota, Nebraska and South Dakota.
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Figure 2: Recursive crop choice for all fields doing exclusively C or S

Source: own computation, from CDL.

conditional sequences of corn-soy choice for all fields in the sample, starting in 2008. The first year
shows the share of corn and soybeans fields, with 48% soy and 52% corn. The second year shows the
corn and soy choice, conditional on the previous year. Numbers of rotating fields here are very close
to the ones in Table 1 (which are averages over the whole 2008-2017 period), with 80% of rotating
fields. The year after, 2010, follows with the same logic, showing the crop choice in 2010 conditional
on the crop choice in 2009, itself conditional on 2009. We see now that the share of fields rotating
since 2008 decreases slightly, becoming 70%. Going till the last year 2017, the share of fields that
always rotated, over the whole period of 2008-2017, is still at 46%. The share of fields practising
monocropping over the whole period shrinks to 3% for corn, and to a very small 0.7% for soybeans.

The fact that there is a very large proportion of fields doing always rotation as well as always corn
is a bit of a puzzling phenomenon. At first sight, crop choice on such fields seems to be fully price
insensitive, going against models relating crop choice to price variations (Hennessy, 2006; Hendricks
et al., 2014b). It is however interesting to note that in Livingston et al. (2015)’s model, the simple
always rotating strategy turns out to be only slightly dominated by a much more complex strategy
based on dynamic linear programming. This suggests a possible explanation of the always rotating
strategy as a simple rule of thumb for farmers. An alternative explanation would be that on these
fields, the rotation effect is strong enough to overcome any large deviation in the ratio of the price of
corn to soybean. According to the same explanation, the fields producing always corn would be fields
with a very low rotation effect, or a low soy yield. As the explanation relies on a purely unobservable
component, it makes it difficult to test in practice. The field-level dataset here does not prove very
useful to disentangle alternative explanations, as we observe here only fields, not farms. This prevents
us from investigating whether always rotating patterns are farmer or field specific.

Figure 3 shows the percentage of fields practising always rotation in each county, as compared to
all other fields doing exclusively corn or soybeans.

The presence of a large proportion of fields practising always or never rotation has interesting
consequences in terms of estimating the rotation effect. These are two subsets on which rotation is
either always or never observed. If we are to estimate rotation effects based on within-field variation
(i.e., using plot fixed effects), these subsets do not experience any variation, and are dropped from
the analysis. It is only when we are incorporating between-field comparisons, either by adding time
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Figure 3: Location of fields always rotating over 2008-2017

Source: own computation, from CDL.
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Figure 4: Average yields for given rotation sequences

Note: Points represent averages, and bars 95% confidence intervals. Source: own computation, from
CDL.

controls, or by removing fixed effects at the plot level, that these subsets can contribute to the analysis.
This raises however the question of how comparable are the always and never rotaters compared to
the other fields doing sometimes rotation.

Comparing average yields on rotating and non-rotating sequences among different subsets, Fig-
ure 4 shows an interesting paradox. The figure shows average yields for rotating sequences and
non-rotating ones (right panel, Same), for each crop. The first number in red computes these means
over the whole sample of fields. A given field might contribute to the rotating mean, the non-rotating
one, or both. We see here that the rotation effect is about 4 [bu/acre] for corn, and about 5 [bu/acres]
for soy. As we discussed previously, there is however a large part of fields who always rotate, and
hence only contribute to the first mean. Likewise, the never-rotaters are only counted in the non-
rotating mean. The next numbers in the figure show average yields depending on the long-term
status of the fields, i.e. whether fields are always, never or sometimes rotating. Surprisingly, if one
were to compute the rotation effect using only the always and never rotaters, we would find a neg-
ative effect, of -12 [bu/acre]! On the other side, the same comparison for soybeans leads to a larger
effect than previously, of about 12 [bu/acre]. This basically means that we are comparing fields with
very different environmental and managerial conditions. A more sound comparison would be based
on restricting the sample to fields that experience both a rotating and non-rotating sequences (de-
noted Mixed). In the Mixed subsample, comparing Average yields in Rotation to average yields in
non-rotating sequences leads now to a positive estimate for corn as we as for soybeans. Interestingly,
the effect shrinks dramatically for soybeans.

What the analysis here suggests is that there appears to be an important selection effect in the
choice of the rotation sequence, where highly productive fields tend to be planted to corn only, and
lower productivity fields see more rotation. For soybeans, fields with soybeans only have the lowest
average yields. Of course, by merely observing that fields with soybeans only have the lowest yields,
we cannot distinguish whether this is caused by a location effect (low fertility fields are planted to
soy) or by the rotation effect (doing soy only leads to very low yields).

To shed more light on the relationship between productivity and crop choice, Figure 5 shows the
distribution of the fields average yields, over the subsample of fields that did exclusively corn or
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Figure 5: Distribution of average corn and soybean yields for each field

Note: data shows the 2D density estimation of the distribution of corn and soy means for each field.

soybeans. What is shown is the average corn yield, and average soy yields, for all fields that planted
at least once corn and once soy. There is a clear positive correlation between the yields of the two
crops: a field that is good for corn is likely to be also good for soybeans. There are some small pockets
with very low corn yet high soy yields (or the converse), but these are likely to be due to measurement
error (most of them have only one year planted to corn or soy, leading to very imprecise means). The
correlation coefficient between corn and soy yields is 44%.

Figure ?? shows for the same dataset the number of years planted with corn (left panel) and num-
ber of years planted in rotations (right panel). The left panel shows that good fields then to be planted
more often to corn than to soy. Conversely, fields with both low corn and low soy yields (on the
bottom left) tend to be more often planted to soybeans. Interestingly, the highest yielding corn fields
are not necessarily the ones planted very often to corn,2 but have rather close to 4-5 years of corn.
Highest soy yields on the other side are reached on fields that are most often planted to corn. This
is probably due to the fact that the three years sequences C-C-S are the most beneficial for soybeans.
Turning now to the number of CS/SC rotations in the right panel, we see that the highest corn yields
are reached with the largest number of CS/SC rotations. On the other side, highest soy yields are ob-
tained with only a few rotations, which suggests again that C-C-S rotations are more beneficial than
the S-C-S ones.

As discussed above, we would expect that fields having a clear advantage for one crop versus the
other (i.e. either lying on the sides of the distribution) would have a higher tendency to cultivate one
crop versus the other. There is weak evidence that this is the case when looking at the right panel of
Figure ??. We see that regions in the center tend to have more rotations than those on the outside. The
pattern is however not very regular, with some important exceptions on the north-east region.

We move now to investigate in more detail the relationship between number of years planted
to corn and yields. Figure 7 shows the distribution of (average field) yields distinguishing whether
a field was planted once, twice etc to corn. Fields planted more often to corn have higher yields
than those planted only fewer times to corn. This goes against the intuition that doing more rotation
increases the yields, and is probably explained by the non-random location effect. Interestingly, we
see that the same pattern happens with soybeans, whose yields are also increasing with fields that
are more often planted to corn. This on the other side is explained both by the field selection effect,
as well as the rotation effect, as the more often corn is planted, the more likely soybeans will be on a

2Remember we do not observe the always planted to corn on this graph as they would not have a soy value.
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Figure 6: Average number of corn and rotation per cell

Note: data represents a simple binning estimator on the grid of corn and soy yields. Contours show
the distribution of the data, the line with 99% indicating 99% of the data is within this contour.

beneficial C-S or C-C-S rotation.
Among fields planted the same number of years to corn, there is variation in the number of years

they were planted in rotation. As an example a field planted 5 years to corn could be planted as C-C-
C-C-C-S-S-S-S-S (0 rotations) or C-S-C-S-C-S-C-S-C-S (5 rotations).3 Figure 8 disaggregates further the
yields, calculating average yields separately depending on the number of rotations and the number
of years planted to corn. We see that now, controlling for the number of years planted to corn, fields
with more rotations have higher yields. The rotation difference shows a slight tendency to decrease
for fields with higher yields (higher number of years planted to corn). Turning to soybeans in Figure 9,
the difference in yields by number of rotations is even clearer. Except for a single case (4 years planted
to corn) doing more rotations is always and strongly associated to higher yields. Interestingly, we see
that unlike corn the effect seems to increase with higher yields/higher number of years planted to
corn.

This section highlighted a few stylised facts on rotation choice and field production in the US
Corn Belt. To summarise these finding, I showed that, in the subset of fields doing exclusively corn
or soybeans: 1) There is a large proportion of fields doing always 〈CS〉 rotation : 46% of the fields
did always 〈CS〉 over ten years. 2) Fields doing always corn 〈C〉 have a higher yield than fields
doing always rotation 〈CS〉. On the other side, fields doing always soybeans 〈S〉 have lower yields
than their always rotating counterpart 〈CS〉. 3) The previous finding suggests that better fields are
used more often to corn, while lower quality ones are planted more often to soybeans. This claim
is corroborated by two further findings. 4) First, looking at fields by years planted to corn, we see a
clear increase in corn yields, but also an increase in soy yields. 5) Second, looking at the correlation
between averages of corn and soy yields for each field, we find a positive correlation (44%). Findings
4) and 5) seem to support the model by Hendricks et al. (2014b) of a one-dimensional field quality
gradient, with low fertility fields doing more soy, medium fertility ones doing rotation and and high
fertility ones doing more corn. 6) Finally, I show that controlling for the number of years planted to
corn, sequences with more rotations are associated with higher yields.

These stylised facts indicate that there are important location effects in the choice of rotating or
not, which raise important challenges for estimation. A further issue with the analysis made above

3In fact, there are many more possible configurations, see Figure 20 in the Appendix for an illustration.
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Figure 7: Yields by number of years planted to corn

Figure 8: Yields by number of corn years and number of rotations
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Figure 9: Soy yields by number of corn years and number of rotations

is that it does not take into account state specificities, or difference in years and weather. The next
section discusses formally both points, investigating how to estimate rotation effects when there are
important location effects.

3 Estimation

In this section, I discuss briefly how to conceptualize the effects of rotation in Section 3.1, then define
the parameter of interest in Section 3.2, and finally discuss the various way to estimate the parameter
in Section 3.3.

3.1 Conceptual model of rotation

Rotation effects in production functions have been modelled in various ways, with the main dif-
ferences being in the way the rotation effects are taken into account, and in the way dynamics are
introduced. An early strand of literature used mathematical programming to derive optimal rules in
a static framework, see El-Nazer and McCarl (1986) or Musser et al. (1985). Dynamic programming
methods based on Bellman equations have been used, see Thomas (2003) on the general case of crop
choice in presence of nitrogen carry-over, or Livingston et al. (2015); MacEwan and Howitt (2011)
specifically on rotations. Although interesting, these methods have the drawback that they do not
lead to closed-form estimators. On the other side, the framework of Hennessy (2006) provides a clear
modelling framework of rotation effects amenable to direct estimation, that I adopt here.

Hennessy (2006) considers two effects of rotation, the input saving effect α and the yield boost ef-
fect β. The input saving effect α arises from nutrient carry-over from the previous period(s), and is
assumed to be perfectly substitutable with chemical fertiliser. Total amount of nutrient N for crop is
equal to the sum of chemical fertiliser F and the input-saving effect α, N = F + α. The input-saving
effect α depends on the type of crop succession, which we will write as αi

j, i.e. when crop i follows

crop j. It is assumed that in absence of rotation, this effect is zero, αi
j = 0 ∀j = i. The second effect

of crop rotation is the yield boost effect βi
j (for crop i following crop j), which is assumed to enter

additively. These two elements lead to the following yield production function for crop i:

Yi(F|j) = yi(F + αi
j) + βi

j
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Embedded in this representation is the assumption that both the input-saving αi
j and yield boost

βi
j effects do not depend on previous level of nutrient Nt−1 or on actual level of fertiliser Ft. While

this restrictive assumption departs from the nitrogen carry-over literature4, it has the advantage of
alleviating the need for dynamic programming tools and to model the crop choice decision in a more
intuitive way. An important implication of the perfect substitutability assumption between input
saving α and chemical fertiliser F is that the optimal fertiliser level with rotation

≈
F is simply the

optimal level without rotation F̃ minus the input saving α,
≈
F = F̃ − α. As a consequence, the total

amount of nutrient N is the same, and the difference in yields is simply β, i.e. y〈SC〉 − y〈C〉 = βC
S .

A second consequence of the perfect substituability between chemical fertilizer and input-saving is
that profit with rotation

≈
Fi

j is equal to the profit without rotation π̃i
j plus yield boost β plus efficiency

saving α: ≈πi
j 6=i = π̃i

i + piβi
j + wαi

j, with pi the price of crop i and w the price of fertilizer.
Analyzing the farmer’s crop choice and rotation sequence decision is particularly easy under the

perfect substitutability assumption. To simplify, let us assume a world with two crops, corn and
soybeans, and a stationary environment with fixed prices pC, pS and w. Under a one-year memory,
the farmer needs to compare only three crop-rotation combinations 〈C〉, 〈S〉 and 〈CS〉, over a two-year
period:

• π(〈C〉) = pC ỹC − wF̃C

• π(〈S〉) = pSỹS − wF̃S

• π(〈SC〉) = 1
2
(
π(〈C〉) + pCβC

S + wαC
S
)
+ 1

2
(
π(〈S〉) + pSβS

C + wαS
C
)

Without rotation, the farmer will choose C over S if π(C) > π(S). Let us assume for now that
π(C) > π(S) holds in general. With rotation, the choice is now between 〈C〉 and 〈CS〉, and the
condition to choose 〈C〉 over 〈CS〉 becomes: π(〈C〉) > π(〈S〉) + pCβC

S + wαC
S + pSβS

C + wαS
C. That is,

corn profit needs not only be higher than soy profit, but also higher than soy profit and the various
rotation gains (evaluated at market prices), βC

S , βS
C, αC

S and αS
C. The condition to choose 〈C〉 over 〈CS〉

then becomes:

ỹC >
pS

pC ỹS +
1

pC w(F̃C − F̃S) + βC
S +

w
pC (αC

S + αS
C) +

pS

pC βS
C (1)

Symmetrically, choosing 〈S〉 over 〈CS〉 will require:

ỹC <
pS

pC ỹS +
1

pC w(F̃C − F̃S)−
(

βC
S +

w
pC (αC

S + αS
C) +

pS

pC βS
C

)
Figure 10 illustrates the choice of decision in the corn and soy yield space. The data is from the

2018 crop budget for Central Illinois (Schnitkey, 2018) which reports prices, yields and fertiliser costs
with and without rotation. The straight line represents the decision boundary in absence of rotation

comparing 〈C〉 over 〈S〉, that is the line ỹC = pS

pC ỹS + 1
pC w(F̃C − F̃S). Assuming that the farmer

knows the corn and soy yields of her field, she will choose 〈C〉 is the point is above the line, or 〈S〉
if below. The two black points correspond to two fields described in the report, one described as
low productivity and the other one as high. Without rotation, this farmer would set up for 〈C〉. The
dashed line represent choice under rotation, taking into account the intercept shift from the rotation

benefits βC
S + w

pC (α
C
S + αS

C) +
pS

pC βS
C as in Equation 1. This illustrates the point before that profit from

〈C〉 needs not only to be higher than profit from 〈S〉, but also higher than the profit from 〈CS〉. In this
case, the yield-boost effect of 5% (shown by the arrow) and input-saving effect of 8% (only for corn)
are strong enough to put both fields within the 〈CS〉 zone.

4Thomas (2003) uses for example a specification similar to αi
j = mj(nt−1).
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Figure 10: Choice of rotating sequence

3.2 Parameter of interest

Estimating the rotation effect raises an interesting econometric challenge. For one, the preliminary
analysis in the previous section shows that there are important selection effects in the fields choosing
rotating sequences. Second, the rotation effect raises a fundamental problem of missing data, where
observing a rotation implies that we are not observing yields on the preceding year. As a consequence,
standard identification strategies such as the difference-in-difference are not directly applicable.

What is the rotation effect? Or more precisely, which rotation effect are we interested in? Let
us denote by y(N, ct−1, M) the yield response function using nitrogen level N, previous crop choice
ct−1, and management practice M. In the experimental field approach, M and N are fully controlled,
allowing to estimate the conditional average rotation effect (CARE):

CARE(n, m) = E[y(N, 1, M)− y(N, 0, M)|N = n, M = m]

This is the effect shown in Figure 3, comparing yields at every level of fertilizer. In practice, there
is more interest in reporting the effect at the so-called economic optimal nitrogen rate (EONR), which
is the point on the yield curve where the slope is equal to the ratio of output to input prices pout/pin.
Owing to the input-saving effect, the EONR is different for rotating and non-rotating fields, so that
what I call here the conditional average rotation effect based on price CAREP reads:

CAREP = CARE(m, pout, pin)

= E[y(EONR1(pout/pin), 1, M)− y((EONR0(pout/pin), 0, M)|M = m]

In the simple model of Section 3.1, the CAREP corresponds to the yield-boost effect β, while the
difference in EONR1 − ENOR0 corresponds to the input-saving effect α.

With the dataset we have, we do not observe fertilizer application, nor management practices,
though we still observe output prices. We hence cannot condition on N or M, implicitly averaging
over them. The quantity we can identify shall be simply called the average rotation effect conditional
on prices (AREP):

AREP(pout, pin) ≡ En1,n0,m

[
E[y(1, n1(pout/pin), m)− y(0, n0(pout/pin), m)]

]
Under the assumption that farmers maximize profit and adjust their fertilizer level to the EONR,

this estimate recover also the yield-boost β. The main difference between the experimental CAREP
and the observational AREP is that CAREP controls the field/management variables as well as fertil-
izer level, while the AREP averages over field and management variables.
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3.3 Identification strategies

Studies based on experimental plot data use a simple between plots strategy, either running t-tests or
linear regression controlling for various covariates. This is justified when plots are sufficiently similar
to be compared, which is at the discretion of the experimenter. With observational data, this approach
may not hold anymore. As the simple analysis in Section 2 showed, dependence between the rotation
choice and potential yield can bias the comparison.

The traditional way to address the fact that fields with different qualities might opt for different
cropping patterns is to use field-level fixed effects αi:

yC
it = αi + βDit + εit (2)

where Dit is the treatment variable of interest, in our case whether or not there was rotation. With
fixed effects, the identifying variation is the within-plot variation in and out of rotation. That is, we
are only considering switching fields that do at least one monocropping sequence and one rotating
sequence (the Mixed category shown in Section 2). The causal effect corresponds to the average treat-
ment on the treated (ATT):

ARET = E[y(1)− y(0)|switcher]

A possible threat for the pure within-plot estimation is that one does not control for year differ-
ences. A situation where “good” plots are rotated during good years while “bad” plots are kept under
monocropping would bias our estimate of the rotation effect. One way to address this is to control
for observable variables, such as weather. The more common solution is to add year fixed effects λt
in a two-way fixed effects model:

yC
it = αi + λt + βDit + εit

Several recent paper discuss the causal interpretation of the two-way fixed effects model (Imai
and Kim, 2019; Goodman-Bacon, 2018; de Chaisemartin and D’Haultfoeuille, 2019). It is well known
that with just two time periods, the two-way fixed effects estimator is numerically equivalent to the
difference in difference (DiD) estimator (see Angrist and Pischke, 2008). Under the parallel trend
assumption, the DiD estimator recovers the treatment on the treated at the second time period, i.e.
on the group that experienced both a treated and non-treated period. Let Dit denote the treatment
variable (taken here in a general context, the specific case of rotation will be discussed later on),
with D = 1 indicating treatment, D = 0 otherwise. The parallel assumption states that the treated
group (Dt1 = 0 and Dt2 = 1) would have followed the same trend in output as the control group
(Dt1 = 0 and Dt2 = 0), if it had not been treated in the second period: //0-0̃

0-0≡ E [∆Yt(0)|0− 1] =
E [∆Yt(0)|0− 0]. The //0-0̃

0-0 notation indicates that 0− 0̃ is the counterfactual trend of the 0-1 group.
Under this assumption, the DID compares the difference in trend between in-switchers (Di1 = 0 and
Di2 = 1) and non-treated (Di1 = 0 and Di2 = 0) outcomes, and will be denoted henceforth DiD01

00 .
With two time periods, we can in some situations observe two more groups, the out-switchers

(Di1 = 1 and Di2 = 0) and fully treated (Di1 = 1 and Di2 = 1). This opens the possibility to use up to
four different DiD estimators. For one, we can estimate the ATT in period 2 for the out-switchers (1-
0), comparing them to the fully treated (1-1). Under the parallel trend assumption that out-switchers
would have followed the same trend as fully-treated had they not been untreated in period 2 ( //1-1̃

1-1),
the DiD10

11 recovers the same ATT, but for the out-switcher group. Going further, we can also compare
the in-switcher (0-1) to the fully treated (1-1). The DiD01

11 will recover the ATT at period 1, if one is
willing to assume now that the 0-1 would have followed the same trend as the 1-1, had they been
treated in period 1 ( //1̃-1

1-1). Table 2 summarises the different estimators and the identifying assump-
tion required to recover a causal effect. All of these estimators can be implemented either using a
difference in means, or using a two-way fixed effects model.
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Table 2: Causal effects with multiple groups

Group Estimator Control group Assumption Causal effect

in-switchers (0-1) DiD01
00 0-0 //0-0̃

0-0 ATT(0-1, T = 2)

DiD01
11 1-1 //1̃-1

1-1 ATT(0-1, T = 1)

out-switchers (1-0) DiD10
11 1-1 //1-1̃

1-1 ATT(1-0, T = 2)

DiD10
00 0-0 //0̃-0

0-0 ATT(1-0, T = 1)

When there are multiple periods, what is a two-way FE βFE2 estimating? Or, more importantly,
what should it estimate? A possible causal parameter of interest would be the average of ATT over
groups and time periods, i.e. ATT ≡ ∑g ∑t

Ngt
N ATT(G = g, T = t) where Ngt refers to the number of

treated units in group g at time t, and N is the grand sum.
de Chaisemartin and D’Haultfoeuille (2019) show that the two-way FE estimates a weighted aver-

age of ATTs, but with weights different from the population weights Ngt/N. Worse, the weights can
be negative, so that the sign of the βFE2 can be even different from the sign of the general ATT. Imai
and Kim (2019) suggest a multi-period estimator, estimating an ATT for each two-year period, and
averaging over the periods. They consider however only the DiD01

00 estimator, so that their estimator
does not cover all the switching units.5 de Chaisemartin and D’Haultfoeuille (2019) suggest a similar
approach, including this time also DiD10

11 . Both these papers require the parallel trend assumptions
to hold for each sub-period. Goodman-Bacon (2018) provides maybe the most comprehensive treat-
ment, showing that the βFE2 is an average of the multi-period ATT and the group trends. This clarifies
the content of the βFE2 in case of a failure of the parallel trends assumption.

In this paper, I follow the approach of de Chaisemartin and D’Haultfoeuille (2019), adapting their
multi-period estimator for the specific case of rotation effects. Estimating the rotation effect raises the
additional challenge that we never get to observe an untreated-treated (0-1) sequence directly. Indeed,
by its very nature, observing a rotation means that the previous crop was not the same. It is hence not
possible that the previous period t− 1 was under monocropping. On the other side, we can observe
directly a treated-untreated sequence (1-0). To see this, let us write crop choice as cit, with cit = 1
for corn and 0 for soybeans. Let Dit be now the rotation treatment dummy, with Dit = 1 indicating
rotation: Dit = 1(cit 6= cit−1). In the standard difference-in-difference framework, we are comparing
outcomes from 0-1 treatment units with outcomes from 0-0 control ones. This cannot happen with
rotations: having a rotation implies that previous’s year crop was different, so that we do not observe
the previous outcome. What we observe is rather a 0− ∅ − 1 sequence, the ∅ value in the middle
indicating that soy was planted that year. This implies that to apply the DiD idea we need to take (at
least) a two years difference, comparing differences in sequences with and without rotation at period
2 and 4. In other words, we are comparing ĎCC ĎSC to ĎCC ĎCC. It should be noted that while the first
sequence contains 3 C values and the second 4, we are only using two of them, the second and the
fourth. The parallel trend assumption becomes here the assumption that the (counterfactual) trend in
absence of rotation at time 3 would be the same as the observed trend for never treated (CCCC).

The CCSC sequence is not the only sequence that experiences within variation. For the out-
switcher category (1-0 in standard DID), the situation is even more complicated. For one, there are
two different cropping sequences with out-switching (i.e. rotation preceding monocropping), ĎSC ĎCC
or CSCC, corresponding to corn rotation sequences 1-0-0 and ∅ -1-0. Furthermore, for the first one,
we can estimate up to three different ATT (at period 2, 3 or 4) while for the second one we can only
estimate one (at period 3). Most of the sequences require either the always or never takers as control
group, although for some of them the control group turns out to be a switcher group.

5This would make sens in an event-study framework though, as no 1-0 is observed.
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Table 3: Corn cropping sequences and identification
Sequence Share Rotations Description Switching? Control Periods

considered
Period
identified

SCSC 61% 1-∅-1 Always rotate

CCSC 9% 0-∅-1 in-switcher at 4 ! 0-0-0 (never rotate CCCC) 2 and 4 4

1 ∅ 1 (always rotate SCSC) 2 and 4 2

SSSC 1.3% ∅-∅-1 only one
CSSC 3%

CSCC 8% ∅-1-0 out-switcher at 3 ! ∅-0-0 (CCCC) 3 and 4 3
SSCC 0.4%

SCCC 4% 1-0-0 out-switch at 3 or 4 ! 1-∅-1 (always rotate SCSC) 2 and 4 4

0 - 0 - 0 never rotate CCCC 2 and 4 2

∅-1-0 3 and 4 3

CCCC 13% 0-0-0 Never rotate

1 Note: Column Sequence indicates the 4 years sequence. Column Rotations indicate whether a rotation is done
in eachof the last three period. 1 stands for rotation, 0 stands for no rotation, and ∅ stands for not observed.
Column Control indicate the control sequence, and the last two columns indicate which periods in the sequence
are considered for the difference-in-difference, and for which period the ATE is identified.

Table 3 shows all possible sequences with four periods for corn.6 The table shows the sequences,
and their notation in terms of rotation. As an example, the sequence S-C–S-C (always rotate) reads 1-
∅-1 in terms of rotation: the second value in the sequence was in rotation (SC), the third is unobserved
for corn (CS, written as ∅), and the fourth is rotation again (SC). The table indicates which are the
switching sequences, i.e. the sequences that have at least once a rotation SC and once a monocropping
sequence CC. These are the sequences that exhibit within variation and used to identify the ATT. The
column control indicates for the switching sequences which sequences can be used as control in the
diff-diff estimator. The columns period considered indicate which period will be used to form the DiD
estimator, while column period identified indicates at which time the ATT is identified. As an example,
for the CCSC sequence, —coded as 0-∅-1 and denoted as in-switcher— we can either use never-rotaters
to identify the effect at time four, or always-rotaters to identify the effect at time 2. Going back to the
general discussion about difference-in-difference estimation with two periods and four groups, this
case corresponds to the first two rows of Table 2, where DiD01

00 identifies ATT(0-1, t2) while DiD01
11

identifies ATT(0-1, t1). The only difference here is that for rotations, we need to take the difference
between time 2 and 4 in a four sequence period, while for the standard DiD we use a period of two
years and take a simple difference. Table 3 reveals more exotic situations in the rotation context. For
one, the out-switchers (i.e. experiencing first 1 then 0) can be found in three different sequences. Two
of the sequences are equivalent under one-year memory. The DiD here would be between period 3
and 4, identifying the effect at period 3. For the last sequence, S-C-C-C, we can identify up to three
different ATT.

If more than four time periods are available, the same analysis is done on a rolling basis. This
implies that for each year, we can have multiple estimators for the same quantity. This is not specific
to the rotation framework: as we saw for the DiD with two periods and multiple groups, we can
estimate ATT at each period. Adding one more year adds two more identification for the groups that
switch in both period. This leaves up to 4 estimates for three periods. Let us take the group 0-1-0 as
example. We can estimate its ATT(T=2) either with DiD01·

00· (use periods 1 and 2), or with DiD·10
·11 (use

periods 2 and 3). This suggests that we have over-identifying restrictions, that can serve as a test for
time homogeneity.

To be valid, the DiD discussed above all require a specific version of the parallel trend hypothesis.
For the CCSC sequence using CCCC as control, we are assuming that E[C̃4 − C2|CCSC] = E[C4 −

6The result is symmetric for soybeans.
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C2|CCCC], where C̃4 indicates the counterfactual value of C4 had it been preceded by corn (i.e. had it
not had the rotation treatment) instead of soybeans. The parallel trend assumption is an identifying
assumption that cannot be tested. In practice, it is customary to run placebo tests, that test for parallel
trend in situations where treatment and control units have the same treatment status. In the standard
DiD framework, this require using pre-intervention years, where both groups have treatment status
0. In the rotation case, we do not necessarily need more data: it turns out that for the specific CCSC
sequence, we can actually build a placebo test from the sequence itself, without additional data.
Indeed, we are comparing CCSC to CCCC, yet are only considering values at time 2 (both CC) and 4
(SC versus CC). The first sequence CC is common to both, and hence can be used as a pre-trend test.

To summarize this section, I showed here methods to estimate rotation effects with observational
data. A key element to take into account with observational data is the non-randomness of crop
choice and field characteristics. I showed here the paradox that higher fertility soils are used more
often for corn than soybeans. As a result, fields doing always rotation turn out to have a higher av-
erage yields compared to those doing always rotation. A first approach to address this issue is to use
plot-level fixed effects. This will control for field characteristic, but identification can be threatened
if there is correlation between rotation choice and specific good/bad years. A usual way to address
this second concern is to add year fixed effects. Resulting two-way fixed effect estimators can be in-
terpreted as doing an average of difference-in-difference estimators. In the rotation case however, the
interpretation is more complicated, as rotating a field implies that last year’s yield was not observed.
I show how to extend the standard DiD in this case, and suggest placebo tests. In the next section, I
proceed to the estimation, and discuss the results.

4 Results

In this section, I proceed to the analysis itself of the various estimators suggested above. I start in
Subsection 4.1 by using the plot fixed-effects estimators. I move then in Subsection 4.2 to the two-
way fixed effects and the multi-year estimator.

Throughout this section, the analysis is made using the subset of fields that never cultivated some-
thing else than corn or soybeans over the 2008–2017 period. Out of our initial sample of fields doing
at least once corn or soybeans (1.6 mio fields), this leaves us with a sample of close to 800’000 fields.7

Among these 800’000 fields, most are in Illinois (27%), Iowa (25%), Indiana (16%) and Minnesota
(12%).

4.1 Plot fixed-effect analysis

I start here by showing the results from a panel approach using plot-level fixed effects. Table 4 shows
the coefficient βFE1 from the fixed-effect panel estimator, versus a model without the αi (pooled esti-
mators):

yC
it = αi + βDit + εit

Dit is the rotation dummy, indicating whether the field was in rotation (ci,t 6= ci,t−1) or not. We es-
timate two different pooled estimators. The first one—Pool switchers—is using the sample of switcher
fields that had at least once a rotation and once no rotation. These are the fields that are used in the
FE1 estimation. The second pool estimator—Pool all—, uses all fields, including the always rotaters
and always corn. The regression confirms the intuition we obtained from Figure 4: doing a within
or between/pooled analysis has dramatic consequences on the estimates. We see that when not con-
trolling for anything (Pool all), we obtain a negative rotation value for corn and strong positive value
for soy. This arises from the fact that better fields are more often planted to corn, and worse fields

7The total number of fields which did always either corn and/or soybeans in our sample is actually higher, but not all fields
have yields estimates from SCYM for every year, mainly due to cloud issues.

16



Table 4: Simple FE1 and pooling estimation

Corn Soy

FE1 Pool switchers Pool all FE1 Pool switchers Pool all

Rotation 10.57∗∗∗ 5.68∗∗∗ −0.81∗∗∗ 0.51∗∗∗ 1.73∗∗∗ 6.24∗∗∗

(0.06) (0.06) (0.04) (0.03) (0.03) (0.02)

Num. obs. 1838471 1838471 4239420 899550 899550 3546032
Num N obs 287324 150854
Num T obs (ave) 6.40 5.96
N. variables 1 2 2 1 2 2
Mean dep 177.24 177.24 175.33 59.14 59.14 62.94
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. Standard errors clustered at the state-year level.

Table 5: Within estimator with weather covariates
Corn FE1 Corn FE1 weather Corn weather Soy FE1 Soy FE1 weather Soy weather

Rotation 10.57∗∗∗ 6.20∗∗∗ 1.86∗∗∗ 0.51∗∗∗ 1.00∗∗∗ 2.71∗∗∗

(0.06) (0.36) (0.50) (0.03) (0.19) (0.17)

Num. obs. 1838471 3716937 3716937 899550 2463737 2463737
Num N obs 287324 709650 150854 490297
Num T obs (ave) 6.40 5.24 5.96 5.02
N. variables 1 90 91 1 90 91
Mean dep 177.24 171.06 171.06 59.14 58.23 58.23
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

are planted more often to soy. In other terms, we are comparing different field qualities rather than
assessing the rotation effect. Estimating the pool estimator on the subset of switching fields leads
to a higher coefficient for corn, and a lower one for soybean, removing part of the location bias. Fi-
nally, using the fixed-effect estimator accentuates the sign reversal, giving even higher values for corn
and even lower for soybeans. Surprisingly, soy has now a quite small estimated rotation effect, at 0.5
[bu/acres], which seems to go against findings in the literature suggesting that rotation is particularly
beneficial for soybeans.8

The next table, Table 5, shows how the fixed-effect and pool estimators change when weather
covariates are included. The set of weather covariate is a very rich set of minimum and maximum
temperatures, precipitation and vapour pressure deficit. I use monthly values, over eleven months,
and include squared terms (see Section ?? in Chapter II). Adding weather controls does have an effect
for both corn and soybean. It reduces importantly the corn coefficient, while somehow increases the
soy one. The fact that adding weather covariates changes the FE1 estimator suggests that rotation
choice is not totally random across years. The last column for each crop (corn weather and soy weather)
is the pooled estimator, this time controlling for weather. The surprising result that the pool estimator
indicates a negative effect for corn is now mitigated. Estimates are however quite different from any
of the FE ones, suggesting that controlling only for weather, as is done in some studies, is not enough
to control for the location bias.

As a final check, I investigate whether heterogeneity is important, and whether it is likely to
change our average estimates. Gibbons et al. (2019) show when there is heterogeneity in the βi, fixed-
effect estimators neglecting the heterogeneity do not necessarily deliver an estimate close to the ATE.
To test whether this might happen in my sample, I estimate slope parameters at the county level, as
well as at the state level. Averaging these leads to results that are very close to the estimate assuming

8Porter et al. (1997) reports 13% yield benefit on experimental fields, and Seifert et al. (2017) find 10% based on observational
fields. Schnitkey (2018) documents as well effects of about 3 [bu/acres], i.e. 5%, on fields in Illinois in 2018.
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Figure 11: Rotation effect at the county level, by state

1 Note: Line in blue shows the value when estimating one single coefficient. Dots in blue show the average
when estimating one coefficient per state.

full homogeneity. This suggests that the average within estimate is not subject to heterogeneity bias.
This does not suggest however that there is no heterogeneity in the estimates. Figure 11 reveals
difference among states. The figure shows the county-specific coefficients in a boxplot for each state.
For corn, a few estimates appear negative, but there are either outliers, or from the state of Michigan
(MI), which has very few fields cultivating exclusively corn and soybeans in my sample.9 On the
other side, for soybeans, the lower quartile of the county-specific coefficients are negative in a few
states (MO and SD). This is a result that will deserve further investigation.

4.2 Plot and time fixed effects

I move now to the analysis adding time fixed effects besides the plot-level ones. The time fixed
effects are first estimated globally, then by state, by agricultural zone (so-called MLRA), and finally
by county.10 Figure 12 shows the resulting coefficients, along with their standard errors. The first
coefficient corresponds to the plot fixed effects βFE1 discussed in the previous section. We see that
adding time fixed effects has the same effect as controlling for weather: for corn, the coefficients are
7 or 6.3, very close to the value of 6.39 obtained in Table 5. Likewise, for soybeans, we see also an
increase in the estimates with respect to the FE1 estimator. The change is however not very strong,
and decays quickly as the time effects are estimated at finer scales.

4.3 Multiperiod DiD estimates

As argued above, causal interpretation of the two-way fixed-effects coefficients is not straightforward,
and due to the weighting scheme of the two-way fixed effect, they might be far from the causal
parameter of interest, the time- and group-average ATT. To investigate this, I implement the multi-
DiD estimator discussed in 3.3. I focus on two specific treatment groups, the in-switchers SCCC and

9There are 4000 of these fields in our sample, among which only 2800 have variation in cropping/non-cropping patterns.
The second smallest state, South Dakota, has ten times more fields both in total (42’000) as well as for fields exhibiting variation
(21’567 fields).

10More precisely, I interact the year dummies with state or county indicators.
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Figure 12: Coefficient froms one-way and two-way fixed-effect models

out-switchers CCSC. For these two groups, I seek to estimate the effect at the fourth period, rolling
over periods of four years (refer to Table 3). I then investigate the over-identifying restrictions for a
same group. Finally, I implement a placebo test for the in-switchers SCCC subgroup, comparing the
difference in the two first CC values of CCSC to those of the control group, the CCCC.

Figure 13 illustrates a specific sequence in 2008–2011 for in-switchers CCSC, compared to non-
rotaters CCCC. The in-switchers, shown with a dashed line, are found to have lower yields than
the always rotaters for the first two periods. This corresponds to the location bias, where fields of
higher quality are more likely to be used intensively for corn. The DiD itself compares differences for
each group between 2009 and 2011. We see that despite being lower in 2009, fields that did rotate in
2010 have now higher yields in 2011. Under the assumption of parallel trends, the difference can be
attributed to the rotation effect.

The year by year DID estimates are shown in Figure 14. There are rather large variations over time
for the estimates, ranging for corn from a value of 0 in 2016 to more than 15 in 2014. For soybean, some

Figure 13: Illustration of the DiD strategy, 2011
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Figure 14: Multi-period DiD for rotation effect

1 Note: points represent the DiD estimates for each subperiod. Confidence bands are based on standard errors
clustered at the county-year level.

negative values appear for at least 3 years. The size of the points in the figure indicates the number of
fields in the treatment group. This reveals that with the DID estimator, we are using a smaller part of
the total sample. For soybeans, this is particularly small, as sequences with three of four soy values
are not encountered often in practice. The sequences we use as control group represent 13% of the
sample for corn, while they only represent 7% for soybeans.

Averaging the multi-year DiD estimators, I obtain a value of 8.31 for corn, and 0.281 for soybeans.
Looking back at Figure 12 that compared βFE1 and βFE2 estimates, this places the multi-year DiD
in-between those. In the standard DiD case with simple treatment, one would expect the multi-year
DiD and βFE2 to coincide if 1) there is no heterogeneity, 2) the parallel trend assumption is fulfilled
(see de Chaisemartin and D’Haultfoeuille, 2019). In our case here with rotation, there are even more
reasons for the estimators to be different. In particular, one should note that we are not using all the
switching groups (refer to Table 3).

As discussed in Section 3.3, by varying the control groups, we can identify the effects at different
timings, when considering the same subperiod. For example, for the in-switchers CCSC, comparing
this group to the CCCC identifies the effect at time 4, while comparing it to the SCSC group identifies
period 2. As soon as we have more than three subperiods of four years, we have multiple estimates for
the same year (i.e., the effect at year 2011 can be estimated from the 2007–2011 period using CCCC, or
from 2009–2013 using SCSC). Under the assumption that the groups are trajectory-independent,11 and
under the parallel trends assumptions, we should expect the two estimates to be the same. Figure 15
shows that it is generally not the case: for most periods, the estimates are different. Only for 2014 and
2015 are the estimates for corn very close.

It would be interesting to investigate why estimates are so similar during some periods and dif-
ferent at other. I conjecture that this is due to the parallel trend assumption holding in the subperiods
related to the 2014 and 2015. Unfortunately, this conjecture is difficult to substantiate in practice. We
obviously cannot test for the parallel trends themselves. Most we can do is to test for the initial trends
to hold in some of the sequences. This can be done comparing the initial values of the CCSC sequence
to the control sequence CCCC. Figure 16 shows the placebo tests for the two first values of the CCSC
sequence, compared to the CCCC ones. A positive value indicates that the treatment ĎSCCC increased
more rapidly than the control ĎCCCC. In general, we see deviations from the parallel trends, some of
which appearing significative.12 Interestingly, there is an opposite pattern for corn and soybeans. For
corn, the placebo test is in general negative: the treatment group increased more slowly, or decreased

11More precisely, the assumption here is that we do not need to condition on the full trajectory of a sequence.
12Note that here significance depends crucially on the type of standard errors used. Without clustering at the county-year

level, results would appear more significative.
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Figure 15: Multi-period DiD: over-identifying test

Figure 16: Multiperiod placebo DiD

1 Note: The year refers to the end period of the placebo test: for example, the point for 2015 indicates that we
were comparing the pair 2014–2015. Standard errors are clustered at the county-year level.

faster compared to the control group. For soybean, it is the opposite: the treatment group increased
faster. For more details, Figure 17 in the appendix shows the two-year trend sequences for corn and
soybeans.

The fact that the placebo test is rejected for many of the series definitely casts some doubt on the
validity of the approach. It is too early at this point to explain why this is the case. Preliminary explo-
rations focused on using more disaggregated time trends, doing state-specific DiD. The rationale for
doing so is that we might still be comparing fields too far from each other. Results from this exercise
do not suggest that placebo tests are less significative. Further steps will involve also controlling for
weather in the regressions, in which case the parallel trend assumption will be done conditional on
the weather covariates.

An alternative explanation to this phenomenon could be that the decision to rotate or not precisely
depends on the previous values observed. Noting that in its second year, corn produced a lower
values than expected, farmers opt to cultivate soybeans instead. The story would go the other way
for soybeans: noting a good soy yield during the second period, farmers decide to rotate for corn.
This latter story seems less plausible however, since a particularly bad soy yield would call for a
rotation rather than continuing the same crop.
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Table 6: Frequency of four-year rotation sequences
Crop Sequence Percentage
Corn S_C_S_C 60.99

C_C_C_C 13.13
C_C_S_C 8.99
C_S_C_C 8.31
S_C_C_C 3.89
C_S_S_C 2.96
S_S_S_C 1.35
S_S_C_C 0.38

Soy C_S_C_S 73.41
S_C_C_S 5.72
C_C_C_S 5.36
S_S_C_S 5.06
S_C_S_S 4.95
S_S_S_S 3.37
C_S_S_S 1.68
C_C_S_S 0.44

5 Conclusion

In this paper, I discuss methods to estimate the effect of rotating crops on the yield of each crop. I use
a rich dataset comprising ten years of corn and soybean yields in the US Midwest, over nine states.
I show first that fields with higher quality tend to be more often cultivated to corn than to soybeans.
This phenomenon leads to counter-intuitive results. Doing a very crude comparison of means from
fields doing always rotation versus fields doing always corn, I show that fields doing always corn
have actually higher averages than fields doing always rotation. This paradox arises from the fact
that better fields are planted more often to corn. I discuss then how to address this issue, adopting a
fixed-effect approach. A plot-level fixed-effects approach solves the issue from comparing different
fields, yet does not control year differences. Building on recent literature, I discuss how controlling
for year fixed effects corresponds to a multiyear difference-in-difference approach. I show then that
the rotation framework brings in an additional difficulty, in that the value from the previous year is
never observed if there is rotation. I adapt then the standard DiD method for the rotation case, which
implies to take longer differences.

Results show that controlling for plot-level fixed effects plays a critical role for estimation. The
multi-DiD approach reveals an important time heterogeneity. Turning to a placebo exercise, I find
significant deviations in pre-trends between control and treatment groups. Current efforts are focus-
ing on understanding how robust this result is, and how it can be explained. A potential explanation
could be that farmers base their decision on the pre-trend, which would invalidate the result. If this
turns out to be the case, I will investigate the use of instruments that affect farmer’s decision to ro-
tate. Past prices and weather can be used as instruments, as they do impact last year decision, and
probably do not impact directly the current year’s yields.

6 Appendix
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Figure 17: Placebo sequences for in-switchers CCSC or SSCS

Figure 18: Recursive crop choice for all fields in the sample (2.2 mio)

Source: own computation, from CDL.
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Figure 19: Share of county area for each crop

/home/matifou/Dropbox/GIS_server/output/figures/crop_location/mean_CS_Area_byCounty_rYlMpBc.png

Source: USDA NASS. Share are here relative to total county area (not restricted to cropland).

Figure 20: Variation in number of rotation, by number of years planted to corn
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