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Abstract

Agricultural price supply response is thought to occur mainly through changes in acreage rather

than through yield increase. Many studies find that yields respond weakly to prices, leading to the

counter-intuitive idea that yields are insensitive to prices. In this paper, I argue that this result is

likely due to the use of aggregated data: county- or state-level yields are averages, whose composi-

tion itself is affected by price changes. When area expansion is done by cultivating less fertile fields

or by foregoing rotation, this composition effect reduces average yields, even if yields increase on

each individual field.

To disentangle the effect of the intensive and composition effect on county-level yields, I run an

analysis at the field level, constructing a dataset of satellite-predicted crop choice and yield data

for corn and soybeans for close to two million fields in the US Midwest. Results indicate that the

field-level yield elasticity to prices is higher than reported elsewhere, ranging from 20% to 30%.

When the same analysis is done using pseudo county-level panel, results change drastically for

corn, becoming even negative. These results shed light on the complex dependency between area

and yield response, supporting the hypothesis that area expansion is made by mainly bringing fields

with lower yields.

1 Introduction

Does agricultural production respond to higher prices by increasing yields, or only by expanding

area? Further, does the type of area response, whether it occurs by using high quality fields or ex-

panding on marginal land, change the dynamics of the yield response? Intuitively, the answer will

depend on whether we are using field-level data or county aggregates. With county or state aggre-

gates, an increase in output prices bringing into production marginal lower-productivity fields will

mechanically decrease average yields. This composition effect suggests that analyzing yield supply
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based on aggregated data delivers estimates that are a mixture of individual yield response and ag-

gregate area response. This makes interpretation of the aggregate-based analysis ambiguous: when

observing changes in county yields, it is not possible to infer whether these changes are effectively

due to changes in individual yields, or whether they are due to a simple change in the composition of

the type of fields within a county. This lack of interpretability of aggregated data has been acknowl-

edged in many supply response studies such as Roberts et al. (2013), Beddow and Pardey (2015) or

Miao et al. (2016), but remains so far unaddressed. As a typical example, Miao et al. (2016, p. 199) find

that the county-yield response to prices for soybeans is close to zero statistically, conceding however

that their result “could also be indicative of the intensive [yield] and extensive margin [area] effects

offsetting each other”. As a result, it is difficult to draw policy-relevant implications from supply

response analysis, for a same estimate can be generated under opposite scenarios.

In this study, I address the non-informativeness of aggregate-based estimates by building a dataset

at the field level. I use recent developments in satellite remote sensing (Lobell et al., 2015; Jin et al.,

2017) to predict corn and soybeans yields at the 30m resolution for eight states in the US Corn Belt.

Combining this with a dataset of crop choice and a dataset of field boundaries, I obtain a dataset

of around two million fields over ten years (2008-2017). I add local corn and soybean prices, mea-

sured from close to 2000 grain elevators, and weather controls. This unique dataset allows me to run

an analysis at the field level, and to compare it to an analysis at the aggregate level by construct-

ing pseudo county-level data. Results confirm the intuition that studies based on county-level data

under-estimate the individual-level yield response, due to the composition effect arising from the

entry of new fields with lower productivity.

The supply elasticity estimates sought in this paper are key to many debates in economics. Given

the role of the US as a large exporter of corn and soybeans, the extent to which a bad harvest in one

part of the world causes higher international prices and volatility depends ultimately on the supply

elasticity in the US, see for example Lybbert et al. (2014). There is also large literature on how to feed the

world in 2050 (Ehrlich and Harte, 2015; Godfray et al., 2010; Tilman et al., 2011), investigating whether

and how agriculture can respond to the predicted increase in demand. Having a good understanding

of the area and yield response is crucial in this debate to identify future bottlenecks. With the demand

predicted to nearly double, will yield increases be enough, or will more land be required for agricul-

ture? The last point has also important consequences to assess the environmental costs of agricultural

expansion. Supply expansion through intensification raises concerns of higher nitrogen leaching, re-
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sulting into ground-water pollution and algal blooms (Hendricks et al., 2014a). On the other side,

supply expansion through extensification can reduce biodiversity and increase greenhouse gas emis-

sion if forests are converted to cropland. The debate on the environmental impacts of the ethanol

mandate in the USA provides a good example where reliable supply estimates are called for. On

one hand, biofuels show a potential to reduce greenhouse gas emissions (GHGs) by replacing gaso-

line with corn-based ethanol. On the other hand, converting forests and grassland into corn fields to

produce ethanol creates important GHGs emissions too. Searchinger et al. (2008) argued that due to

the negative land-conversion effect, the corn-based ethanol was actually doubling GHGs emissions,

instead of reducing them by 20% as initially thought. Searchinger et al.s results are however based on

the assumption that supply responds mainly through the extensive margin; assuming a higher yield

elasticity lessens their conclusion.

Despite the need for a good understanding of the complex dynamics of supply response, there

is a paucity of studies investigating the interlinkages between area and yield response. Most study

rely on aggregate data, and hence are only informative of a net effect, which is a mixture of yield and

area response. Miao et al. (2016) use county-level data in the US from 1977–2007, and is hence the

closest paper to mine. Using an instrumental variable approach, Miao et al. find a rather strong area

(elasticity of 50%) and yield (23%) response for corn, whereas for soy they find a non-significative

yield response, yet a strong area response (62%). Haile et al. (2016) follow a similar approach at

the international level, and find altogether lower elasticities, with less differences between yield and

area response. Further studies estimating the area or yield supply at international or regional levels

include Roberts and Schlenker (2013); Magrini et al. (2018); Haile et al. (2014); Weersink et al. (2010).

While some of these studies acknowledge that they are estimating a mixed effect of yield and area

response, none of them is able to address this composition bias. Studies at the field level are more

rare, and focus on the area response. Hendricks et al. (2014b) use data from the USDA crop map, and

find a strong area response elasticity of 40% and 36% for corn and soybeans respectively. Interestingly,

they show that there is an aggregation bias between county- and field-based analysis, although the

bias they are concerned with pertains to the difference between short-term and long-term response.

Two key elements are required for a composition effect to arise with aggregate data: there must

first be a response through area expansion, and that area expansion must occur on fields that have

different (typically lower) yields than the current fields. The US Corn Belt offers an interesting case

in that regard, as it features two distinct types of area expansions, either by foregoing rotation or by

3



Matthieu Stigler Yield response at the field level

converting marginal land. In the so-called 3I states (Iowa, Illinois and Indiana), corn and soybeans

are almost the only crops, and represent more than 90% of the total cultivated area. These two crops

are cultivated in rotation, which simultaneously reduces the need for fertilizer and increases yields.

In these states, expansion of one of these two crops is mostly made at the expense of the other, by fore-

going rotation and turning into monocropping, instead of by converting marginal land. Hendricks

et al. (2014b) estimate separately area response from the rotating and marginal land, and find that

the area response from marginal fields is nearly zero. This phenomenon is corroborated by various

descriptive studies, see Plourde et al. (2013), Ren et al. (2016) and Stern et al. (2012), who document

that the increase in the corn area at the end of the 2000-2010 decade happened mainly by foregoing ro-

tation with soybeans in the 3I states.1 In the other states of the Corn Belt however, the second channel

of area expansion, through marginal land, is more common. Lark et al. (2015) document a net large

increase in cropland of about three million acres during the 2008-2012 period. This happened mainly

at the periphery of the Corn Belt, with the largest increases in South and North Dakota, followed by

Southern Iowa and Northern Missouri. See also Johnston (2014) and Wright and Wimberly (2013) for

similar findings.

Figure 1 illustrates the two channels of expansion, showing the shares of corn, soybeans and other

crops over time. The figure distinguishes two groups of states, the 3I states as well as a second group

comprising of Ohio, South Dakota, Michigan, Minnesota, Missouri, Wisconsin (referred to as 6+ states

henceforth). Three elements from the discussion above can be read from this figure: 1) the fact that

the total share of corn and soybeans is much higher in the 3I than the 6+. 2) The fact that the 2007

price spike induced an expansion of corn at the expense of the soybean area. 3) The fact that there

was an important conversion of marginal land into corn and soybeans in the 6+ states, at the expense

of grassland and wheat (see Figure 10 in the Appendix page 32 for a detailed picture of the shares of

the non corn-soy categories for each state).

What do these two expansion channels imply in terms of yield differential? For the rotational

channel, the new fields are cropped corn after corn. There is an extensive literature (see Stigler, 2019a

for a survey and refined estimates) that corn-after-corn sequences suffer a rotation penalty of about

5% to 15% for corn, and 2% to 10% for soybeans. Less is known about the yield differential in the

marginal channel. Most authors conjecture that marginal land, in particular land kept under set-

asides programs, is of lower quality. But on the other side, the marginal channel occurs also by

1This documented increase in monocroppping fields reverted back however to a larger share of fields in rotation, see Sec-
tion 3.2 in the companion paper for an updated analysis up to 2017 (Stigler, 2019b).
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Figure 1: Shares of crops over the 2000–2017 period

Note: Data compiled from the USDA Cropland Data Layer (CDL). Data for the 6+ group as a whole
is only available 2008 onwards.
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converting fields previously cropped to wheat, which are not necessarily of lower quality.

To summarize, we see that the two elements required for a composition effect are present in the

Corn Belt 1) there is a rather strong area response according to most of the literature. 2) the new area

seems in general to be originating from lower yielding fields. How this affects the yield response

remains to be investigated. To do so, I present in Section 2 a model of aggregate yield response in

presence of fields with heterogeneous quality. I begin with a marginal land model in Sub-section 2.1,

and extend it in 2.2 and 2.3 to the rotation case. I describe then the dataset in Section 3 and proceed

to the identification and estimation in Section 4.

2 Conceptual model

In this section, I show how the heterogeneity of fields can induce differences in supply response

between aggregated or disaggregated levels. I start in Section 2.1 by building a marginal land model,

where increases in prices induce lower fertility fields to be put into production. Given that in the

Corn Belt, cropland extension is made more by foregoing rotation rather than using marginal land, I

extend the model in Section 2.2 and 2.3 to the rotational margin.

2.1 Marginal land model

In his opus On the Principles of Political Economy and Taxation, Ricardo (1821) describes the situation

where production of wheat is expanded by using less and less fertile fields. While Ricardo’s interest

was on how this was affecting farmer’s rent, I investigate here the implications in term of aggregate

supply response. Let the yield production function y(p, θ), depend on prices p and land quality θ.

Field heterogeneity is modelled by introducing a field-specific land quality θi, with density f (θ) and

cumulative function F(θ). To focus on the question of land quality, fields are assumed to be identical

except for land quality; in particular, they have the same production function, i.e. yi = y(p, θi). Yields

are assumed to be increasing in land quality θ, i.e. ∂y(p, θ)/∂θ > 0, as well as in prices ∂y(p, θ)/∂p > 0

as usual. Let θ?(p) be the minimum quality threshold at which profit is non-negative given a price p,

i.e. θ?(p) is such that π(θ?(p), p) = 0. Fields with higher land quality θ ≥ θ? enter production, while

fields with lower quality (θ < θ?) do not produce. Normalising the land quality over the [0, 1] interval,

the average yield ȳ(p) ≡
´ 1

0 f (θ)y(p, θ)dθ is obtained by using the formula for the expectation of a

truncated distribution:
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Figure 2: Ricardian model: continuous version
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(b) Productivity and average yield at p̄

ȳ(p) = ȳ(p, θ?(p)) =
ˆ 1

θ?(p)
f (θ)y(p, θ)dθ/(1− F(θ?(p)))

Figure (2) illustrates the basic setup of the model. Panel (a) shows the distribution of land quality

f (θ), and the corresponding minimum quality threshold θ?(p1) for some base price p1 above which

fields are used for production. Panel (b) shows the production function over the land quality variable

θ, for a given base price p1, and the corresponding average yield ȳ(p1) = ȳ(p1, θ?(p1)).

What will be the effect of a price increase p2 > p1 on the average yield ȳ(p1, θ?(p1))? Intuitively,

we will see two effects, an increase in the intensive margin (higher yields) and in the extensive margin

(more fields). The intensive effect is the direct effect of prices on yields, and is positive ȳ(p2, θ?(p1)) >

ȳ(p1, θ?(p1)). The extensive effect is negative, due to our assumption of expansion through lower

quality land dθ?(p)
p < 0, and hence ȳ(p1, θ?(p2)) < ȳ(p1, θ?(p1)). This suggests that 1) the effect

on the average is lower than the average individual effect 2) the total effect on the average yield
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is ambiguous, and could even be negative, despite having positive individual yields. Equation (1)

formalizes this intuition (see appendix A.1 for the full derivation):

∂ȳ(p)
∂p

=

´ 1
θ? f (θ) ∂y(p,θ?)

∂p dθ(1− F(θ?))− f (θ?(p)) dθ?(p)
dp

[´ 1
θ? f (θ)[y(p, θ?)− y(p, θ)]dθ

]
(1− F(θ?))2 (1)

The first term in the numerator represents the intensive margin response, and corresponds to the av-

erage yield response of fields already producing. Under the standard assumption of positive individual

supply response ∂y(p,θ)
∂p > 0, this term is positive. The second term corresponds to the composition ef-

fect of the extensive margin. It is composed of the (weighted) acreage response term dθ?(p)
dp multiplied

by the average yield difference among producers
´ 1

θ? f (θ)[y(p, θ?)− y(p, θ)]dθ. With the assumption

of yields increasing in θ ( ∂y(p,θ)
∂θ > 0), and of entry of lower quality land ( dθ?(p)

p < 0), we have that

y(p, θ?) < y(p, θ) ∀θ < θ?, so that the second term is negative.

This formula formalises the decomposition of the aggregate response into the average positive

response of incumbent producers, and the composition effect due to the entry of new producers. As

these new producers have lower yields, the composition effect reduces the aggregate response.

Whether the overall impact of the price increase will be negative or positive depends on the re-

spective strength of the intensive and extensive margins. Figure 3 illustrates two possible cases. The

first panel shows a case where there is a strong intensive margin (displacement of the curve) and

small extensive one (new point θ?(p2)). The resulting average yield is higher than before. The second

panel depicts the opposite situation, where a weak intensive response combined to a strong extensive

response lead to a decrease in the average yield.

2.2 Modelling supply with rotation

The marginal land model developed in the previous section depicts only one of the area expansion

channels at play in the Corn Belt. The second channel of expansion is by foregoing rotation. I discuss

here how to model individual supply with rotation, and show in the next section how to integrate

rotation into the aggregate model developed in Section (2.1).

Rotation effects in production functions have been modelled in various ways in the literature,

with the main differences being in the way the rotation effects are taken into account, and in the way
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Figure 3: Effect of a price increase
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(b) Low intensive margin, high extensive

dynamics are introduced. An early strand of literature used mathematical programming to derive

optimal rules in a static framework, see El-Nazer and McCarl (1986) or Musser et al. (1985). Dynamic

programming methods based on Bellman equations have been used, see Thomas (2003) on the crop

choice in presence of nitrogen carry-over, or Livingston et al. (2015); MacEwan and Howitt (2011)

specifically on rotations. Although interesting, these methods have the drawback that they do not

lead to closed-form estimators. On the other side, the framework of Hennessy (2006) provides a clear

modelling framework of rotation effects amenable to direct estimation, which I adopt here.

Hennessy (2006) considers two effects of rotation, the input saving effect α and the yield boost effect

β. The input saving effect arises from nutrient carry-over from the previous period(s), and is assumed

to be perfectly substituable with chemical fertiliser. This implies that the total amount of nutrient

nt available for the crop is equal to the sum of chemical fertiliser Ft and the input-saving effect α,

nt = Ft + α. Further, this input-saving effect depends on the type of crop sequence, which we will

write as αi
j, i.e. when crop i follows crop j, leading to ni

t = Fi
t + αi

j. The second effect of crop rotation

is the yield boost effect βi
j (for crop i following crop j), which is assumed to enter additively. These two

elements lead to the following yield production function:
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Y(F, i, j) = yi(Fi
t + αi

j) + βi
j

Given that crop j was planted at previous period t− 1, crop i? is chosen for period t if πi?(p, w, i?, j) >

πi(p, w, i, j)∀i 6= i?, where πi is the profit function for crop i depending on the output price p and fer-

tiliser price w. Hennessy (2006) makes the critical assumption that both the input-saving αi
j and yield

boost βi
j effects do not depend on previous level of nutrient nt−1 or on actual level of fertiliser Ft.

While this restrictive assumption departs from the nitrogen carry-over literature2, it has the advan-

tage of alleviating the need for dynamic programming tools. Furthermore, it allows us to focus on

our question of interest, yield supply response in the short term.

An important implication of the perfect substitutability assumption between input saving α and

chemical fertiliser is that the optimal nutrient level n?
t does not depend on the previous crop status.3

This in turn implies that the difference in yield for crop i between rotation 〈ji〉 or rotation 〈ki〉 is equal

to the difference in respective yield boosts, i.e. Ỹ(p, w, i, j) − Ỹ(p, w, i, k) = βi
j − βi

k. This result is

particularly important for this paper as it justifies the empirical approach relying on yields only, given

that data on fertilizer use is not available (which is very difficult to infer from satellite observation).

2.3 Aggregate supply with rotational margin

I turn now to integrate Hennessy (2006)’s model on production with rotation to the aggregate supply

model developed in Section (2.1). For the sake of intuition, and in line with findings from the agro-

nomic literature (Farmaha et al., 2016a; Porter et al., 1997), I assume that corn and soybean follow

a one-year memory process, that is the rotation effect depends only on what was planted one year

before. This means that we only consider four sequences, C → C, S → S, C → S and S → C, which

will be depicted as rotation types 〈C〉, 〈S〉 and 〈CS〉.

Following Hendricks et al. (2014b), I assume that that rotation types 〈S〉, 〈C〉 and 〈CS〉 are nat-

urally ordered over a corn-propensity index θ. Fields with lowest propensity θ < θ1 are cultivated

to soybeans in monoculture 〈S〉, fields with intermediate propensity θ1 ≤ θ < θ2 are cultivated in

rotation 〈SC〉, while fields with high propensity θ2 ≤ θ are cultivated to corn in monoculture 〈C〉.
2Thomas (2003) uses for example a specification similar to αi

j = mj(nt−1).
3To see this, note that, for two different previous crops j or k, first order conditions y′(F∗ij + αi

j) = w/p and y′(F∗ik + αi
k) =

w/p will both lead to the same available nutrient n?
t = F∗ij + αi

j = F∗ik + αk
j .
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Figure 4: Corn-propensity model
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See Figure 4 for an illustration. While this hypothesis was a simple conjecture made for the sake of

modelling by Hendricks et al. (2014b), I find support towards this hypothesis in related work (Stigler,

2019b), showing that fields of lower quality are most often cultivated to soybeans, whereas higher

quality ones are used more often for corn.

Like in the marginal land model, a price increase will affect average yields through both the in-

tensive and extensive margins. The difference is that while in the marginal land model we were

assuming that lower quality fields were being used, here we assume that fields that are less prone

to corn monoculture are being used. As we shall see, this raises several complications in the model.

Looking first at the increase in area, we see that corn expansion following an increase in the corn to

soy price occurs through a decrease in the two thresholds θ1 and θ2. Lowering of θ2 corresponds to

rotation fields 〈CS〉 switching now to corn-monoculture 〈C〉 fields. This is the case where the benefits

of rotations are now offset by the increase in corn price, so it becomes profitable to grow corn again,

even if it has a lower yield. Conversely, lowering of θ1 corresponds to soy-monoculture fields 〈S〉

entering now a rotation scheme.

Are the new corn producing fields different from the previous ones? To answer, I assume that

the production function follows the structure described in Section (2.2). That is, rotating fields 〈SC〉

will benefit from the yield boost β and fertiliser-saving α, yet the difference between rotating and

non-rotating is β. In that case, the area response described above will have two opposite effects: 1)

the reduction in rotating fields 〈SC〉 (which moved towards 〈C〉) reduces the number of fields with
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Figure 5: Illustration of the CDL , yield and boundary data

rotation benefits, i.e. brings in fields with lower productivity, 2) the increase in rotating fields 〈SC〉

(which moved upwards from 〈S〉) brings in new corn fields with the rotation benefit, i.e. fields with

higher yields.

This indicates that whether the area response brings overall fields of lower or higher yields is not

as clear as in the marginal land model. Ultimately, this depends on the relative strengths of the area

elasticity of the 〈SC〉 and 〈SC〉 fields, as well as on their relative shares. In practice, the share of 〈SC〉

is much more important than the share of 〈S〉: averaging over two-year sequences, 7% of the fields

followed a S → S sequence, 80% a rotating one, while 15% followed a C → C. This suggests that the

composition effect will also be negative for rotating fields, and that we expect supply response to be

lower based on average data than on individual data. The next section discusses how to estimate this

in practice.

3 Crop and yield data

To conduct an analysis at the field-level, I assemble data from three main sources: a crop classification

at the pixel level, a yield map for the corresponding corn and soybeans pixels, and a field boundary

dataset. Figure 5 illustrates the three datasets combined. The first panel shows the crop classification,

together with the field boundaries. The second panel shows the yield predictions for the pixels for

which the CDL predicts maize. The third panel shows the soybeans yield predictions.
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3.1 Crop classification

The crop data comes from the USDA Crop Data Layer (CDL) dataset (Boryan et al., 2011). The CDL

classifies Landsat pixels of 30m× 30m into a large number of classes. The accuracy of the classification

for maize and soybeans in the Corn Belt is very high, in general above 95%4. Corn and soybeans

appear in multiple distinct classes, including categories such as corn and soybeans only, but also

double-crop categories such as “Winter Wheat and Corn” or “Soybeans and Cotton”. Due to the

small share of the alternative classes, I focus on the main corn and soybeans class.

3.2 Yield data

The yield predictions are based on the scalable satellite-based crop yield (SCYM) method of Lobell

et al. (2015) and Jin et al. (2017). The method predict yields based on a satellite-derived vegetation

index.5 Parameters linking the vegetation-index to predicted yields are derived from an agronomic

crop growth model. In brief, the agronomic model is used to simulate multiple realisations of yields

and vegetation index. The simulated replications are used to estimate a regression between vegetation

index and yields. These estimated parameters are used in turn to predict yield based on the satellite-

observed vegetation index. The advantage of this method is that it does not make use of ground data

for training/calibration purpose. When ground data is available, it can be used as true validation,

leading to out-of-sample (i.e. test) measure of fit, instead of in-sample measures (training).6

While the original papers covered 2008 to 2015, and predicted soy only for the 3I states, I extended

the data till 2017, and extended soy for the five remaining states too. The accuracy of the multiple

iterations of the model have been discussed in Lobell et al. (2015), Lobell and Azzari (2017) and

Farmaha et al. (2016b), based either on field-level or county-level. In the data companion paper

(Stigler, 2019b), I show detailed comparisons of the county-averages from SCYM against the official

NASS statistics. For corn, the correlation is the highest in the three I states, at 85% at least. It is

lower for the other states, with the lowest correlation being 58% for Ohio. For soybeans, results are

generally less precise, the lowest correlation being 52%, again for Ohio, while the highest is 82% for

Minnesota. There is ongoing work by Dado et al. (2019) to improve the model for soy, which will

be integrated into this analysis when available. When validated against more than twenty thousand

4See https://www.nass.usda.gov/Research_and_Science/Cropland/metadata/meta.php
5The methods uses the so-called Green Chlorophyll Vegetation index (GCVI) which is similar in spirit to the more widely

known normalised difference index, NDVI.
6As such, the comparisons of R2 between SCYM and direct calibrated regression in Lobell et al. (2015); Burke and Lobell

(2017) are not valid as they compare training and test R2.
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corn fields, Deines et al. (2019) find that the overall correlation for corn is at 68%, ranging from 53% to

79% depending on the state. Interestingly, the model is still relatively accurate at the 30m pixel level,

with an overall correlation reaching 55%.

3.3 Field boundaries

An issue with the CDL crop data is that the analysis is done at the pixel-level, while we are interested

in field-level analysis. There exists however a dataset of fields boundary, the USDA Common Land

Unit (CLU).7 Unfortunately, the actual dataset is not publicly available, so that only a copy of the 2009

version can be used.

Two issues arise when using this dataset. Firstly, as the data is from 2009, fields boundaries may

have changed. Drastic changes are unlikely, but cultivation of two different crops in the same field is

possible. The second issue is that given that the CDL analysis is at the pixel level, instead of being at

the field level, pixels in a field can contain multiple crop classes. Preliminary investigations showed

clear cases of border contamination, where pixels at the edge of the field were attributed other classes

(in particular classes corresponding to bush/forest elements).

These two issues call for specific rules for the attribution of a crop to a given field. Hendricks et al.

(2014b) used a centroid-offset rule, where the field’s class is attributed according to the class of the pixel

that lies at a certain distance of the field’s centroid. Stevens (2015) on the other side use a majority

rule, classifying the crop of a field according to the mode of its pixels. I follow a similar approach,

yet make it more stringent: I set a minimum threshold on the frequency of the mode averaged over

the years. The frequency of the mode can be interpreted as a measure of classification consensus,8 and

hence the procedure amounts to keeping only fields with high consensus. Further, I only take into

account for this calculation interior pixels, i.e. pixels that do not touch the border of the field. This

avoids to consider mixed pixels, that are potentially contaminated by elements outside of the field.

Figure 6 shows the frequency of the mode, with either all pixels taken into account, or only the

interior ones. This is made for all plots in the eight states, using CDL classification for 2015. It is

interesting to see that although the field boundaries were made in 2009, there is still a relatively good

agreement for the year 2015. One can see that taking only interior pixels instead of all pixels leads to a

much better result: a much larger proportion of the fields have 90% or more of the pixels showing the

7https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-products/

common-land-unit-clu/index
8Note that classification consensus is not classification accuracy: it is possible that all pixels within a field are wrongly classi-

fied. This is however unlikely, given the relatively high classification accuracy of the CDL for corn and soybeans.
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Figure 6: Agreement of pixel classification, over all fields, 2015 data
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same value. One see furthermore a few bumps around the value of 50%, 66% and 75%. This suggests

that the field was planted to two distinct crops (or more), using either a 1/2, 1/3 or 1/4 proportion.

To retain only fields with a good classification accuracy, the threshold was set at an average of at

least 85% over all years considered (2008-2015). This is a trade-off between keepign enough fields

once we want to aggregate fields over counties, and keeping well-classified fields. As a robustness

checks (see 4.3), I also use a stricter version of the criterion, where I use only fields which have a

minimum (not an average) of 85% classification accuracy over the whole sample.

3.4 Weather data

Weather variables are introduced as control variables to avoid omitted variable bias. While it is rea-

sonable to think that weather is not influenced by prices, it is still the case that markets might antici-

pate weather events later in the season. To prevent this, I include a large set of weather controls from

the DAYMET dataset (Thornton et al., 2017), which is at a resolution of 1000m × 1000m. The dataset

includes precipitation, minimum and maximum temperatures, as well as partial pressure of water

vapour. These daily measures are averaged per month, and squared terms are included. Growing

degree days (GDD) will be included later on, following the work of Schlenker and Roberts (2006,

2009).
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3.5 Price variables

Price variable pM
it and pS

it are futures quotations for post-harvest delivery (December for maize and

November for soybeans), quoted pre- and in-season. The pre-planting period is defined to be the

month of February and March. This is chosen earlier than actual planting times which are Mid April

to May for maize, and May to June for soybeans. Given that the choice of crop is almost only between

maize and soybeans, the planting period relevant to maize is also the one relevant for soybeans. Fi-

nally, this is also the period chosen by Hendricks et al. (2014b). The pre-planting price is also relevant

for the yield equation, as farmers can influence yields by choosing specific types of hybrids or the

sowing densities. Later on, I shall include as well a post-planting price, which shall be defined as the

May-June period. This is intended to reflect within season adjustments, such as fertiliser application.

Given the sunk costs already supported, it is expected that post-planting price changes will have a

smaller effect compared to pre-planting ones in the yield equations.

Futures prices are adjusted for the local basis, which is taken as the difference between the closest

delivery futures price and the local spot price at neighbouring elevator. The basis is measured at the

same period that the price is defined, i.e. for pre-planting prices, I use an average of February-March

futures (for the December maturity) and an average of the basis at the same period.

The cash prices were obtained from elevator data found in Bloomberg9. I end up with a dataset

of close to 2000 elevators points. Data at the field level is obtained by spatial interpolation from

neighbouring elevators. I use inverse distance weighting; interpolation parameters are obtained by

cross-validation. It might be objected that possible transportation costs should be considered, taking

for example at distance to the elevator. However, given that I use a fixed-effects strategy at the field-

level, there is no need for such an adjustment, as it will get absorbed by the fixed-effects.

Figure 7 shows the location of the grain elevators and a smooth representation of the local basis.

The location of the elevators follows closely where corn and soybeans are planted, compare with

Figure 11 on Page 33.

On ethanol refineries There is an extensive literature (see Motamed et al., 2016 for references) find-

ing that ethanol refineries have an impact on local maize acreage response. Motamed et al. (2016) for

example find that the elasticity of maize acreage with respect to local refining capacity is about 1.5.

As local refineries are likely related to the price variable, this suggests that one should add a refinery

9Bloomberg disseminates data originally collected by Data Transmission Network and Geograin. Data was geo-located,
and databases were consolidated, averaging quotations over close vicinities.
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Figure 7: Location of elevators and basis interpolation (corn, March 2014)
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vicinity variable to avoid omitted variable bias. This however raises the concern that we are adding a

so-called bad control (see Angrist and Pischke, 2008 section 3.2.3). Bad control happens when the con-

trol variable is itself endogenous to the outcome variable. This is unfortunately likely to be the case

here, where location of refineries itself depends on acreage response. This is at least the argument

made by Motamed et al. (2016), motivating their search for IV variables. Besides this, effects of the re-

finery location are likely to translate into changes in the local basis (as found by McNew and Griffith,

2005). This implies that the yield response I am measuring is also including the effect of refineries.

This only changes the interpretation of the response coefficients: they include not only year-to-year

variations, but also more longer term variations.

4 Identification strategy and results

The main objective of the empirical analysis is to obtain reliable estimates of the supply response

at the field level. The second objective is to compare the field level estimates with estimates based

on aggregate data. The research hypothesis is that yield response at the aggregated level is under-

estimating micro response, due to the composition effect of acreage response in average yields.

4.1 Empirical approach

The main relationship we want to estimate is the link between yields yit and prices pit. For corn for

example, the equation is:

yC
it = αi + βC pC

it + βS pS
it + γxit + εit

where pC is the price of corn and pS the price of soybeans, while x describes the set of covariates.
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It should be noted that this is a highly unbalanced panel, given that farmers plant corn and soybeans

alternatively.

The identification strategy relies on fixed effects at the field level, which control for time-invariant

unobserved soil and farmer characteristics. There are however two main challenges in the estimation.

For one, there is the threat of reverse causality, with yield response possibly affecting prices back.

Second, there is a potential endogeneity between crop choice and yield response.

The issue of reverse causality from yields to prices, and that of the type of variable to proxy

for price expectations, have been discussed at length in the literature. Initial supply response esti-

mates were based on the Nerlove (1956) model, that proxies for future price expectations by using

a distributed lag model of past prices. Gardner (1976) subsequently argued that using instead fu-

ture prices was representing better farmers expectations. According to this argument, using futures

prices for post-harvest maturity observed at pre-planting times should ensure that there is no reverse

causality, since yields realized in October cannot influence prices observed 10 months before. This ar-

gument was challenged by Roberts and Schlenker (2013), who argued that markets might anticipate

bad harvests, hence introducing back a source of reverse causality. Roberts and Schlenker advocated

for an IV approach, using past yield shocks as instruments, while simultaneously controlling for cur-

rent weather shocks. Hendricks et al. (2015) showed that the same result could be obtained without

the instrument, and that one only needed to control for current weather shocks. I follow this insight

in the empirical part, using pre-planting future prices and a rich set of weather controls, including

monthly precipitation, temperatures and humidity, together with their squared terms.

The second identification challenge is potential endogeneity over time between crop choice and

yield response. If farmers choose to grow corn only in “good” years, we will only observe a partial

sample, potentially biasing the results. To address this, I make use of a unique feature of the dataset

at hand. It turns out that there is a large subsample of the fields which, over the whole period con-

sidered, always rotated, or always cultivated corn.10 The subsample of always rotaters is pretty large,

34%, while the fields always used for corn amount to 5%, see Figure 13 in the Appendix, page 34

for an illustration. On these fields, the area response is zero, and crop choice is perfectly predictable

given last year’s choice. This ensures that estimating yield response on each subsample will be free

of any endogeneity between crop choice and yield.

A third estimation challenge arose, which was not initially expected. Regressions using both the

10There is also a subsample which always cultivated soybeans, but it is extremely small, less than 0.01%
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Table 1: Regression: effect of weather controls

Corn Soy

W: none W: early W: all W: none W: early W: all

Pre-planting Price −0.552∗∗∗ −0.349∗∗∗ 0.179∗∗∗ −0.230∗∗∗ −0.125∗∗∗ 0.218∗∗∗

(0.017) (0.024) (0.038) (0.011) (0.020) (0.045)

Num. obs. 8297625 8297625 8297625 7596788 7596788 7596788
Num. N obs 1790910 1790910 1790910 1775658 1775658 1775658
Num. T obs (ave) 4.633 4.633 4.633 4.278 4.278 4.278
Num. variables 1 25 89 1 25 89
R2 0.449 0.711 0.810 0.407 0.503 0.568
R2 (proj model) 0.136 0.547 0.702 0.030 0.187 0.294
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. Errors clustered at the county level.

price of corn and soybeans proved unstable to estimate, with high variations in the estimates depend-

ing on small changes in the specification. This is a typical indicator of multicollinearity, and indeed

corn and soybean prices are highly correlated.11 Unfortunately, the sample at hand starts in 2008, and

does not include the 2007 high-price episode, when prices of corn and soybeans diverged substan-

tially. To address the problem, I include only the own price in each equation, that I use the price of

corn in corn equation, and soy price for the soy equation. This is justified under the assumption of

the farm acting in presence of complete credit and insurance markets: once the crop is planted, say

corn, the output price of the soy alternative does not play a role in the input decision for corn.

4.2 Results

I begin the analysis looking at the effect of controlling for different subsets of weather covariates.

Weather covariates include monthly minimum and maximum temperatures, precipitation as well as

vapour pressure, in levels and with their squared terms. I estimate three specifications, first with no

weather control at all (model W: none), controlling then for weather in the early season pre-planting,

from January to March (W: early) and finally controlling for the full season, from January till October

(W: all).

Table 1 shows the regression for corn and soybeans. Coefficients are elasticities, derived from a

log-log specification.

When having either no controls at all (W: early) or controls only for the beginning of the season (W:

11Multicollinearity measures such as the variance inflation factor were well above the value of 10 considered as evidence of
multicollinearity.
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Table 2: Regression: IV estimation with past weather

Corn Soy

W: none W: none W: all W: all W: none W: none W: all W: all

Price OLS −0.611∗∗∗ 0.173∗∗∗ −0.243∗∗∗ 0.314∗∗∗

(0.020) (0.040) (0.012) (0.050)
Price IV −0.616∗∗∗ 0.342∗∗∗ −0.244∗∗∗ 0.294∗∗∗

(0.021) (0.050) (0.013) (0.061)

Num. obs. 7493813 7493813 7493813 7493813 6866125 6866125 6866125 6866125
Num. N obs 1783087 1783087 1783087 1783087 1765975 1765975 1765975 1765975
Num. T obs (ave) 4.203 4.203 4.203 4.203 3.888 3.888 3.888 3.888
Num. variables 1 1 89 89 1 1 89 89
R2 0.470 0.470 0.827 0.827 0.415 0.415 0.589 0.589
R2 (proj model) 0.160 0.160 0.726 0.725 0.031 0.031 0.319 0.319
IV Ftest 4885.279 209.648 6909.109 291.070
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. Errors clustered at the county level. The sample does not contain year 2008.

early), we obtain negative coefficients. On the other side, once controlling for weather during the full

season, the coefficients get a positive sign, as expected for a supply response estimate. Coefficients

in the full model show an elasticity of 18% and 22% for corn and soy respectively. This is close

to the estimate for corn of 23% found by Miao et al. (2016), but substantially different from their

non-significant soybean estimate. These results are very interesting per se, as they substantiate the

claim by Roberts and Schlenker (2013) that only using pre-planting futures price as suggested by

Gardner (1976) is not enough to control for endogeneity. This is explained from the fact that there are

some within-season events that can be predicted, implying that a regression on prices alone captures

actually reverse causality. We see also that a rather large set of variables is needed to adequately

control for weather.

Turning now to the IV estimation, I use the previous-year weather instruments suggested by

Roberts and Schlenker (2013) and investigate if Hendricks et al. (2015)’s finding that they have no

impact on area regressions also holds for yield regressions. Table 2 shows the IV estimates, for two

of the three weather models presented above, either with no weather covariates (W: none) or with

full-season covariates (W: all).

In absence of weather controls, the instruments do not have any effect, and the IV estimates are

nearly identical to the OLS ones. The same happens with the model controlling for only the begin-

ning of the season (W: early in Table 1), and is not reproduced here. Once controlling for weather

throughout the season (W: all), the instruments have a noticeable effect on the corn estimate, which is

now twice higher than its OLS counterpart. For soybeans on the other side, this does not happen, and

the IV estimate is very close to the OLS one. These results suggest that there is for corn some elements
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Table 3: Regression: subset analysis on rotating status

Corn Soy

All Mixed Always rotate Always Corn All Mixed Always rotate

Pre-planting Price 0.179∗∗∗ 0.161∗∗∗ 0.287∗∗∗ 0.202∗∗∗ 0.218∗∗∗ 0.209∗∗∗ 0.303∗∗∗

(0.038) (0.039) (0.042) (0.051) (0.045) (0.049) (0.047)

Num. obs. 8297625 5579742 2461572 256311 7596788 5184750 2412038
Num. N obs 1790910 1253629 510552 26729 1775658 1264944 510714
Num. T obs (ave) 4.633 4.451 4.821 9.589 4.278 4.099 4.723
Num. variables 89 89 89 89 89 89 89
R2 0.810 0.813 0.806 0.709 0.568 0.557 0.584
R2 (proj model) 0.702 0.699 0.728 0.632 0.294 0.271 0.410
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. Errors clustered at the county level.

of predictability of the next harvest that is not well captured by the current weather covariates. The

2012 drought year, which particularly affected corn, could be explaining this. As a whole, the results

from the IV analysis indicate that my estimates represent a conservative lower bound for the true

relationship.

To investigate the second potential concern, the presence of endogeneity over time between crop

choice and prices, I run the preferred model with all weather covariates, on the subsamples of fields

always rotating, doing always Corn, as well as the Mixed ones, which have both rotating and non-

rotating sequences. Always Soy cannot be estimated, as there are less than 0.2% of the fields following

this sequence. For the sake of comparison, the full sample All is reproduced, showing the same

coefficients as in the previous Table 1. Results are shown in Table 3. The coefficients on the always

rotating subsample turn out to be substantially higher than the Mixed subsample, and higher than the

full sample All. This suggests that there is indeed endogeneity in the crop choice, where higher prices

induce an area response through marginal land and rotation-foregoing fields, both which come with

lower yields, biasing the estimation of the pure intensive response that we seek here. If one focuses

instead on the fields where crop choice is deterministic (either always rotating or always doing corn),

the response is higher. Interestingly, we note a difference in the elasticity between fields doing always

rotation and always corn, the fields doing always corn having a lower response. This is likely due

to the fact that corn-monoculture fields tend to have higher yields, see Section 3.3 in the companion

paper (Stigler, 2019b). Yield response to fertiliser shows strong decreasing returns (see Figure 12 in

the Appendix, page 34), and mono-culture fields are more likely to lie on the flat segment of the

fertilizer response curve where yields barely respond to fertiliser increases.

As a final step, I now reconstruct a pseudo county-level panel, computing county means from my
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Table 4: Regression: analysis at the county level

Corn Soy

All Mixed Always rotate Always Corn All Mixed Always rotate

Pre-planting Price 0.001 0.001 0.118 0.141∗ 0.196∗ 0.206∗ 0.178∗

(0.057) (0.057) (0.066) (0.068) (0.097) (0.097) (0.090)

Num. obs. 6865 6864 5850 4793 6672 6669 5859
Num. N obs 704 704 598 488 692 692 598
Num. T obs (ave) 9.751 9.750 9.783 9.822 9.642 9.637 9.798
Num. variables 89 89 89 89 89 89 89
R2 0.925 0.924 0.908 0.836 0.806 0.805 0.753
R2 (proj model) 0.876 0.875 0.881 0.777 0.630 0.632 0.675
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. Errors clustered at the state-year level.

data for each year. I do this for the whole sample, as well as for each subsample separately. Results

are shown in Figure 22. We see a drastic change in the supply estimate, with the total coefficient being

now even negative for corn! For corn, the result seems to be entirely driven by the mixed category,

which is negative. Surprisingly, results for soybeans are less affected, and the estimate on the full

sample is only slightly smaller than the estimate based on the field-level dataset.

4.3 Robustness checks

Clustering standard errors at different levels Table (5) the preferred model for data at the plot level

is estimated using standard errors clustered at the county level. Clustering at the state level would be

arguably interesting, yet is not possible owing to the fact that there are only 8 states. I use state-year

clusters, which provides 80 clusters, which should be reasonable for the asymptotic approximation.

For the sake of comparison I also include errors clustered at the plot level. Without surprise, errors

using plot clusters are very tight, while using county or state-year errors widens them significantly,

yet does not make any coefficient insignificant.

Including trend terms It is usual in yield regressions to include a time trend term, to capture among

other technological increase in yields. While controlling for time seems important, it should be noted

that there is a fundamental tension between controlling for time and keeping interesting time vari-

ation in our explanatory variable. Given that the price variable is comprised of the local basis and

the future price, if one were to include time fixed effects, this would result into our price variable

containing only the local basis, the future prices being swept out by the within-units transformation.

This means that we can at most control for trend, not having a too flexible specification, as this would
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Table 5: Robustness check: different clustering of errors

Crop Subset SE type Estimate P-value Conf low Conf high

Corn All Plot 0.179 < 2e-16 *** 0.175 0.184
County 0.179 1.81e-06 *** 0.106 0.253
State-Year 0.179 0.00205 ** 0.065 0.294

Mixed Plot 0.161 < 2e-16 *** 0.156 0.167
County 0.161 4.37e-05 *** 0.084 0.239
State-Year 0.161 0.00663 ** 0.045 0.278

Always Rotate Plot 0.287 < 2e-16 *** 0.279 0.295
County 0.287 9.50e-12 *** 0.204 0.369
State-Year 0.287 1.03e-05 *** 0.159 0.414

Soy All Plot 0.218 < 2e-16 *** 0.211 0.225
County 0.218 1.32e-06 *** 0.129 0.306
State-Year 0.218 0.01642 * 0.040 0.395

Mixed Plot 0.209 < 2e-16 *** 0.200 0.218
County 0.209 2.05e-05 *** 0.113 0.305
State-Year 0.209 0.01951 * 0.034 0.384

Always Rotate Plot 0.303 < 2e-16 *** 0.293 0.313
County 0.303 1.26e-10 *** 0.211 0.396
State-Year 0.303 0.00217 ** 0.109 0.497

have a similar effect than the time fixed effects. This is however not a large concern, as the period

under consideration is rather limited, ten years, implying that a linear time trend should capture well

enough the general evolution of yields. In Table 6, I show the normal specification (none), and com-

pare it to a specification with a general trend (year) as well as state-year trends. Results are rather

robust, and stay qualitatively the same.

Restricting the sample to stricter classification As described in Section 3.3, tentative fields bound-

aries were selected for the analysis depending on the quality of the crop map classification. A field

Table 6: Regression: including time trends

C: none C: state-year C: year S: none S: state-year S: year

Pre-planting Price 0.179∗∗∗ 0.189∗∗∗ 0.210∗∗∗ 0.215∗∗∗ 0.158∗∗ 0.215∗∗∗

(0.038) (0.037) (0.037) (0.045) (0.050) (0.048)

Num. obs. 8297625 8297625 8297625 7672405 7672405 7672405
Num. N obs 1790910 1790910 1790910 1783714 1783714 1783714
Num. T obs (ave) 4.633 4.633 4.633 4.301 4.301 4.301
Num. variables 89 97 90 89 97 90
R2 0.810 0.811 0.810 0.566 0.568 0.566
R2 (proj model) 0.702 0.704 0.703 0.290 0.292 0.290
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. Errors clustered at the state-year level.
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Figure 8: Field classification consensus

would be retained if the classification consensus12 was at least 85% on average over the full period.

This implies that in a given year, a field might be classified say to corn only at 50%, leaving the pos-

sibility that there were actually two crops on that field. If there is a strong within-field variation, this

could affect our estimate of the annual yield. A much stricter criterion consists in keeping only fields

whose classification consensus is at least 85% over the whole period.

Figure 8 shows the percentage of fields which have a classification consensus of at least 85%,

among the fields that have on average 85% of classification consensus. The stricter classification rule

keeps about 30% of the overall sample used in the analysis above. Looking at the various rotation-

status subsets, the shares vary slightly: the Always Rotating subsample has a higher share of field with

high classification consensus, for both crops.

I rerun now the analysis either on the stricter subsample of fields with at least 85% classification

consensus over the whole period. Figure 9 shows the coefficients from the Strict Classification, and

shows as well for comparison the standard coefficients using the Full sample. The impact is nearly

negligible for the Always Rotate and Always Corn subsamples. On the other side, there is a rather large

impact for the Mixed subsample, which sees a decrease in the elasticity, in particular for corn. The

confidence intervals however always overlap, suggesting that the difference are not significant.

12Classification consensus is the frequency of the mode.
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Figure 9: Regression: using stricter subsample

5 Conclusion

This paper investigates the yield price elasticity of corn and soybeans in the US Corn Belt. Previous

literature based on county-level data found a rather small response, leading some authors to argue

that yields barely respond to prices. This comes at odd with micro evidence that farmers adjust their

fertiliser level or planting seed density to output prices. In this paper, I argue that this is mainly due

to a composition effect owing to the reliance on county-aggregated averages. If area responds also

to prices, the composition of the average changes. As area expansion is mainly done through using

marginal land of lower fertility, or foregoing rotation and its benefits, the composition effect possibly

reduces the average yields.

To investigate this, I build a large dataset of close to two million fields in the US Corn Belt, using

a novel dataset of corn and soybean predictions based on satellite data. I find a rather high yield

elasticity, of 18% for corn, and 22% for soybeans. To address concerns of reverse causality from yields

to prices, I use past weather instruments as in Roberts and Schlenker (2013), and find that these only

have an effect once one controls for in-season weather covariates. The IV for corn suggests that the

elasticity for corn is even higher, at 30%. A second concern with the fixed effects approach here

is that crop choice might be endogenous to prices. To address this, I take advantage of a specific

feature of the dataset, the presence of a large number of fields who always rotate. This provides me
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a subsample that is free of possible endogeneity, and free of the composition effect. Estimating price

yield response on this subsample, I find that supply response is higher for fields who always rotate,

while it is sensibly lower for fields that changed cropping sequences over time, and hence are subject

to endogeneity. I interpret this result as evidence that my estimates represent a causally identified

relationship for at least a subsample of my dataset. I proceed in turn to a pseudo-county analysis,

where I aggregate my fields at the county level, then run a county-panel regression, mimicking the

approach followed by current literature. I find that yield estimates are drastically reduced for corn.

In particular, the subsample of mixed fields that change cropping patterns over time now have a

close-to-zero effect. This suggests the presence of a composition effect that biases downwards supply

estimates based on county data.

The analysis presented here faces several limitations. First of all, there is non-random measure-

ment error in the yield predictions. Soybeans in particular is less accurately estimated, possibly ex-

plaining some of the variability in the estimates found above. A bias analysis (see companion paper

Stigler 2019b) shows that the direction of the measurement error in the yield data actually biases

downwards our estimates of supply elasticity, suggesting estimates here represent a lower bound.

There are undergoing efforts by Deines et al. (2019); Dado et al. (2019) to improve the accuracy of the

satellite predictions, and these will be used in the analysis once available. A second limitation of this

analysis is that the cross-price elasticities could not be estimated. This was due to a high collinearity

between the corn and soybean prices, whose ratio remained relatively stable over the period consid-

ered, 2008-2017. Ironically, the years just before and just after this period witnessed much stronger

price variations, due to the price spike in 2007, as well as the trade war with China and its impact

on soybeans in 2019. While using data per 2008 is difficult due to the unavailability of crop maps for

certain states prior to 2008, using data from 2019 will be done in a near future. A final limitation of the

current analysis is that spatial heterogeneity in the response could not be investigated. Preliminary

results indicate however important heterogeneity, in line with results about area response from Pates

and Hendricks (2018). This seems an interesting line of research, and I leave it for future work.
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A Derivations

A.1 Derivation of equation 1

Note that notation here differs slightly from the notation in the main text. Yield function y has to

be substituted for f , density and cumulative functions f () and F() become g() and G(). Finally, the

main text describes the case where land above θ? produces, while the proof below is for the case

where fields below θ? do produce.

We want the derivative of f̄ (p) =
´ θ?(p)

0 g(θ) f (p, θ)dθ/G(θ?(p)) with respect to prices. Using

Leibniz rule for the integral, together with the ratio rule, leads to:

∂ f̄ (p)
∂p

=

[
g(θ?(p)) f (p, θ?(p)) dθ?(p)

dp +
´ θ?

0 g(θ) ∂ f (p,θ)
∂p dθ

]
· G(θ?) +

´ θ?

0 g(θ) f (p, θ)dθ · g(θ?) dθ?(p)
dp

G(θ?)2

The first and third terms in the numerator can be combined into (omitting the dependency of θ?

on p):

g(θ?)
dθ?(p)

dp

[
f (p, θ?)G(θ?)−

ˆ θ?

0
g(θ) f (p, θ)dθ

]
=

g(θ?)
dθ?(p)

dp

[ˆ θ?

0
g(θ) f (p, θ?)dθ −

ˆ θ?

0
g(θ) f (p, θ)dθ

]
=

g(θ?)
dθ?(p)

dp

[ˆ θ?

0
g(θ)[ f (p, θ?)− f (p, θ)]dθ

]

Bringing this term back into the main equation leads to:

∂ f̄ (p)
∂p

=

´ θ?

0 g(θ) ∂ f (p,θ)
∂p dθG(θ?) + g(θ?(p)) dθ?(p)

dp

[´ θ?

0 g(θ)[ f (p, θ?)− f (p, θ)]dθ
]

G(θ?)2

A.2 Figures
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Figure 10: Shares of other crops, by state and year

Note: shares based on the fields available retained in the dataset.
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Figure 11: Corn and soybeans location
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Figure 12: Corn yield response to fertiliser

Figure 13: Conditional rotation history, 2000-2010
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